Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Table of contents
Textbook solutions

All Solutions

Page 353: Practice Problems

Exercise 23
Solution 1
Solution 2
Step 1
1 of 2
We should use $F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ equation

So ;

$F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ = $dfrac{(1600N)(72cm^{2})}{1440 cm^{2}} = 80 N$

Result
2 of 2
$$
textit{color{#c34632}80N}
$$
Step 1
1 of 3
Given information:

Weight of the chair: $F_g=1600 mathrm{N}$

Cross-sectional area of a piston: $A_c=1440 mathrm{cm^2}$

Cross-sectional area of a smaller piston: $A_p=72 mathrm{cm^2}$.

We need to calculate the force $F_p$, acting on the smaller piston, required to lift the chair.

Step 2
2 of 3
In order for chair to move, the pressure applied to the chair by the small piston, must at least be equal to the weight of the chair across the cross section of the chair, so we have:
$$begin{align*}
P_p&=P_g\
frac{F_p}{A_p}&=frac{F_g}{A_c}\
end{align*}$$
We solve this equation for $F_p$ to get the required force
$$begin{align*}
F_p&=frac{F_gA_p}{A_c}\
&=frac{1600cdot72}{1440}\
&=boxed{80 mathrm{N}}
end{align*}$$
Result
3 of 3
$$F_p=80 mathrm{N}$$
Exercise 24
Solution 1
Solution 2
Step 1
1 of 2
We should use $F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ equation ;

So;

$F_{2} = dfrac{F_{1}A_{2}}{A_{1}} = dfrac{(55N)(2.4m^{2})}{(0.015m^{2})} = 8.8 times 10^{3} N$

Result
2 of 2
$textit$$text{color{#c34632} 8.8 times 10^{3} N $$}$
Step 1
1 of 3
**Given information:**

Force exerted on the hydraulic piston: $F_p=55 mathrm{N}$

Cross-sectional area of the hydraulic piston: $A_p=0.015 mathrm{m^2}$

Cross-sectional area of the piston that the car sits on: $A_c=2.4 mathrm{m^2}$

We need to calculate the weight of the car $F_g$.

Step 2
2 of 3
Because the car is being lifted the pressure of the gravitational force exerted on the cross-sectional area of the piston the car sits on must be at least equal to the pressure exerted by the mechanic on the hydraulic piston in the upward direction so we have:
$$begin{align*}
P_g&=P_c\
frac{F_g}{A_c}&=frac{F_p}{A_p}
end{align*}$$
we solve this equation for $F_g$ to find the weight of the car
$$begin{align*}
F_g&=frac{F_p A_c}{A_p}\
&=frac{55cdot 2.4}{0.015}\
&=boxed{8800 mathrm{N}}
end{align*}$$
Result
3 of 3
$$F_g=8800 mathrm{N}$$
Exercise 25
Solution 1
Solution 2
Step 1
1 of 5
hfill . \
textbf{Given:} \
$F_1 = 400 text{N}$ \
$F_2 = 1100 text{N}$ \

textbf{Find:} \
$frac{A_1}{A_2} = ?$ \

Step 2
2 of 5
hfill . \
textbf{Calculation:}\
To get get an expression for the ratios of the areas of the pistons, we start with the equation below

$$
F_2 = frac{F_1A_2}{A_1}
$$

Step 3
3 of 5
hfill . \
Isolating $A_1$ and $A_2$ on the left side of the equation, we have

$$
frac{A_1}{A_2} = frac{F_1}{F_2}
$$

Step 4
4 of 5
hfill . \
Plugging in the given values, we have

$$
frac{A_1}{A_2} = frac{400}{1100}
$$

$$
boxed{frac{A_1}{A_2} = 0.36}
$$

Result
5 of 5
$$
frac{A_1}{A_2} = 0.36
$$
Step 1
1 of 2
$F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$

So ;

$dfrac{A_{2}}{A_{1}} = dfrac{F_{2}}{F_{1}} = dfrac{400 N}{1100N} = 0.4$

Result
2 of 2
$textit$$text{color{#c34632}0.4$$}$
Exercise 26
Solution 1
Solution 2
Step 1
1 of 7
hfill . \
textbf{Given:} \
$A_1 = 7.0 times 10^{-2} text{m}^2$ \
$A_2 = 2.1 times 10^{-1} text{m}^2$ \
$F_2 = 2.7 times 10^3 text{N}$ \
$h_2 = 0.20 text{m}$ \

textbf{Find:} \
(a) $F_1 = ?$ \
(b) $h_1 = ?$

Step 2
2 of 7
hfill . \
textbf{Calculation:}\
textbf{(a)} \
To get an exression for $F_1$, we start with the equation below

$$
F_2 = frac{F_1A_2}{A_1}
$$

Isolating $F_1$ on the left side of the equation, we have

$$
F_1 = frac{F_2A_1}{A_2}
$$

Step 3
3 of 7
hfill . \
Plugging in the given values

$$
F_1 = frac{(2.7 times 10^3) cdot (7.0 times 10^{-2})}{(2.1 times 10^{-1})}
$$

$$
boxed{F_1 = 900 text{N}}
$$

Step 4
4 of 7
hfill . \
textbf{(b)} \
To get an expression relating $A$ and $h$, we assume that the volumes traced by the movements of the two pistons are equal thus we have

$$
V_1 = V_2
$$

Since $V = Ah$, we can express the equation above as follows

$$
A_1h_1 = A_2h_2
$$

Step 5
5 of 7
hfill . \
Isolating $h_1$ on the left side of the equation, we have

$$
h_1 = frac{A_2h_2}{A_1}
$$

Step 6
6 of 7
hfill . \
Plugging the given values

$$
h_1 = frac{(2.1 times 10^{-1}) cdot (0.20)}{(7.0 times 10^{-2})}
$$

$$
boxed{h_1 = 0.60 text{m}}
$$

Result
7 of 7
(a) $F_1 = 900 text{N}$

(b) $h_1 = 0.60 text{m}$

Step 1
1 of 2
a)

$F_1 = dfrac{F_2 A_1}{A_2} = dfrac{(2.7e3)*(7.0e-2)}{(2.1e-1)} = 900 N$

b)

$$
h_1 = dfrac{h_2 A_2}{A_1} = dfrac{(0.20)*(2.1e-1)}{(7.0e-2)} = 0.6 m
$$

Result
2 of 2
a) 900 N

b) 0.60 m

Exercise 27
Solution 1
Solution 2
Step 1
1 of 8
hfill . \
textbf{Known:} \
$rho_text{brick} = 1.8rho_text{water}$ \
$rho_text{water} = 1.00 times 10^3 frac{text{kg}}{text{m}^3}$ \
$V = 0.20 text{m}^3$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$F_text{apparent} = ?$ \

Step 2
2 of 8
hfill . \
textbf{Calculation:}\
To solve for the apparent weight of the brick in water, we use the equation below

begin{equation}
F_text{apparent} = F_g – F_text{buoyant}
end{equation}

Step 3
3 of 8
hfill . \
To get an expression for $F_g$, we use the equation

$$
F_g = mg
$$

We know that the definition of density is $rho_text{brick} = frac{m_text{brick}}{V}$. Plugging this into the equation above, we have

begin{equation} tag{2}
F_g = rho_text{brick}Vg
end{equation}

Step 4
4 of 8
hfill . \
To get an expression for the buoyant force, we use the equation

begin{equation} tag{3}
F_text{buoyant} = rho_text{water}Vg
end{equation}

Step 5
5 of 8
hfill . \
Plugging in the Equation (2) and (3) into Equation (1), we have

$$
F_text{apparent} = rho_text{brick}Vg – rho_text{water}Vg
$$

$$
F_text{apparent} = (rho_text{brick} – rho_text{water})Vg
$$

Step 6
6 of 8
hfill . \
Since $rho_text{brick} = 1.8rho_text{water}$, we can express the equation above as follows

$$
F_text{apparent} = (1.8rho_text{water} – rho_text{water})Vg
$$

$$
F_text{apparent} = 0.8rho_text{water}Vg
$$

Step 7
7 of 8
hfill . \
Plugging in the given values, we have

$$
F_text{apparent} = 0.8(1.00 times 10^3)(0.20 text{m}^3)(9.8)
$$

$$
boxed{F_text{apparent} = 1600 text{N}}
$$

Result
8 of 8
$$
F_text{apparent} = 1600 text{N}
$$
Step 1
1 of 2
$F_{apparent} = F_g – F_{buoyant}$

$F_{apparent} = rho_{brick} V g – rho_{water} V g$

$F_{apparent} = (rho_{brick} – rho_{water}) V g$

$F_{apparent} = ((1.8)*(1000) – (1000)) * (0.20) * (9.80)$

$$
F_{apparent} = 1600 N
$$

Result
2 of 2
$$
1600 N
$$
Exercise 28
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Known:} \
$F = 610 text{N}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$V = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To get an expression for the volume of the submerged part of the her body, we use the equation

$$
F = rho Vg
$$

Isolating $V$ on one side of the equation

$$
V = frac{F}{rho g}
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
V = frac{(610)}{(1.0 times 10^3) cdot (9.8)}
$$

$$
boxed{V = 0.062 text{m}^3}
$$

Result
4 of 4
$$
V = 0.062 text{m}^3
$$
Step 1
1 of 2
$F = rho V g$

Solve for V:

$$
V = dfrac{F}{rho g} = dfrac{610}{(1000)*(9.80)} = 0.0622 m^3
$$

Result
2 of 2
$$
0.0622 m^3
$$
Exercise 29
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Known:} \
$F_g = 1250 text{N}$ \
$V = 16.5 times 10^{-3} text{m}^3$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \

textbf{Unknown:} \
$F_text{apparent} = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To solve for the tension in the wire supporting the camera, we determine the apparent weight of the camera using the equation below

$$
F_text{apparent} = F_g – F_text{buoyant}
$$

$$
F_text{apparent} = F_g – rho_text{water}Vg
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
F_text{apparent} = 1250 – (1.0 times 10^3) cdot (16.5 times 10^{-3}) cdot (9.8)
$$

$$
boxed{F_text{apparent} = 1090 text{N}}
$$

Result
4 of 4
$$
F_text{apparent} = 1090 text{N}
$$
Step 1
1 of 2
$F = F_g – F_{bouyant}$

$F = F_g – rho_{bouyant} V g$

$F = 1250 – (1000)*(16.5e-3)*(9.80)$

$$
F = 1090 N
$$

Result
2 of 2
$$
1090 N
$$
Exercise 30
Solution 1
Solution 2
Step 1
1 of 7
hfill . \
textbf{Known:} \
$rho_text{foam} = 0.10rho_text{water}$ \
$V_text{foam} = 1.0 text{m} times 1.0 text{m} times 0.10 text{m}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \

textbf{Unknown:} \
$F_text{brick} = ?$ \

Step 2
2 of 7
hfill . \
textbf{Calculation:}\
The total weight $F_g$ of the brick and the plastic foam is given by the equation

$$
F_g = F_text{brick} + F_text{foam}
$$

Step 3
3 of 7
hfill . \
To get an expression for $F_text{brick}$, we use the equation below

$$
F_text{apparent} = F_g – F_text{buoyant}
$$

$$
F_text{apparent} = (F_text{brick} + rho_text{foam}V_text{foam}g) – rho_text{water}V_text{foam}g
$$

Step 4
4 of 7
hfill . \
According to the problem, the buoyant force must equalize the weight of the brick, thus we must set the apparent weight to 0

$$
0 = (F_text{brick} + rho_text{foam}V_text{foam}g) – rho_text{water}V_text{foam}g
$$

Isolating $F_text{brick}$ on the left side of the equation, we have

$$
F_text{brick} = rho_text{water}V_text{foam}g – rho_text{foam}V_text{foam}g
$$

$$
F_text{brick} = (rho_text{water} – rho_text{foam})V_text{foam}g
$$

Step 5
5 of 7
hfill . \
Since $rho_text{foam} = 0.10rho_text{water}$, we have

$$
F_text{brick} = (rho_text{water} – 0.10rho_text{water})V_text{foam}g
$$

$$
F_text{brick} = 0.90rho_text{water}V_text{foam}g
$$

Step 6
6 of 7
hfill . \
Plugging in the given values

$$
F_text{brick} = 0.90 cdot (1.0 times 10^3) cdot (1.0 times 1.0 times 0.1) cdot (9.8)
$$

$$
boxed{F_text{brick} = 880 text{N}}
$$

Result
7 of 7
$$
F_text{brick} = 880 text{N}
$$
Step 1
1 of 2
$F_{bricks} + F_{foam} = F_{buoyant}$

$F_{bricks} + rho_{foam} V g = rho_{water} V g$

$F_{bricks} = rho_{water} V g – rho_{foam} V g$

$F_{bricks} = (rho_{water} – rho_{foam}) V g$

$F_{bricks} = (1000 – (0.10)*(1000)) * (1.0*1.0*0.10) * (9.80)$

$$
F_{bricks} = 882 N
$$

Result
2 of 2
$$
882 N
$$
Exercise 31
Solution 1
Solution 2
Step 1
1 of 6
hfill . \
textbf{Known:} \
$F_text{canoe} = 480 text{N}$ \
$rho_text{foam} = 0.10rho_text{water}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$V= ?$ \

Step 2
2 of 6
hfill . \
textbf{Calculation:}\
According to the problem, the buoyant force of the foam must equalize the combined weight of the canoe and the foam. We can express this using the equation below

$$
F_text{buoyant} = F_text{foam} + F_text{canoe}
$$

$$
rho_text{water}Vg = rho_text{foam}Vg + F_text{canoe}
$$

Step 3
3 of 6
hfill . \
Isolating $V$ on the left side of the equation

$$
rho_text{water}Vg – rho_text{foam}Vg = F_text{canoe}
$$

$$
(rho_text{water} – rho_text{foam})Vg = F_text{canoe}
$$

$$
V = frac{F_text{canoe}}{(rho_text{water} – rho_text{foam})g}
$$

Step 4
4 of 6
hfill . \
Since $rho_text{foam} = 0.10rho_text{water}$, we can express the equation above as follows

$$
V = frac{F_text{canoe}}{(rho_text{water} – 0.10rho_text{water})g}
$$

$$
V = frac{F_text{canoe}}{0.90rho_text{water}g}
$$

Step 5
5 of 6
hfill . \
Plugging in the given values, we have

$$
V = frac{(480)}{(0.90) cdot (1.0 times 10^3) cdot (9.8)}
$$

$$
boxed{V = 0.054 text{m}^3}
$$

Result
6 of 6
$$
V = 0.054 text{m}^3
$$
Step 1
1 of 2
$F_{canoe} + F_{foam} = F_{buoyant}$

$F_{canoe} + rho_{foam} V g = rho_{water} V g$

$F_{canoe} = rho_{water} V g – rho_{foam} V g$

$F_{canoe} = (rho_{water} – rho_{foam}) V g$

Solve for V:

$V = dfrac{F_{canoe}}{(rho_{water} – rho_{foam}) g}$

$V = dfrac{480}{(1000 – (0.10)*(1000)) * (9.80)}$

$$
V = 0.0544 m^3
$$

Result
2 of 2
$$
0.0544 m^3
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Chapter 9: Momentum and Its Conservation
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice