Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 353: Practice Problems

Exercise 23
Solution 1
Solution 2
Step 1
1 of 2
We should use $F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ equation

So ;

$F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ = $dfrac{(1600N)(72cm^{2})}{1440 cm^{2}} = 80 N$

Result
2 of 2
$$
textit{color{#c34632}80N}
$$
Step 1
1 of 3
Given information:

Weight of the chair: $F_g=1600 mathrm{N}$

Cross-sectional area of a piston: $A_c=1440 mathrm{cm^2}$

Cross-sectional area of a smaller piston: $A_p=72 mathrm{cm^2}$.

We need to calculate the force $F_p$, acting on the smaller piston, required to lift the chair.

Step 2
2 of 3
In order for chair to move, the pressure applied to the chair by the small piston, must at least be equal to the weight of the chair across the cross section of the chair, so we have:
$$begin{align*}
P_p&=P_g\
frac{F_p}{A_p}&=frac{F_g}{A_c}\
end{align*}$$
We solve this equation for $F_p$ to get the required force
$$begin{align*}
F_p&=frac{F_gA_p}{A_c}\
&=frac{1600cdot72}{1440}\
&=boxed{80 mathrm{N}}
end{align*}$$
Result
3 of 3
$$F_p=80 mathrm{N}$$
Exercise 24
Solution 1
Solution 2
Step 1
1 of 2
We should use $F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$ equation ;

So;

$F_{2} = dfrac{F_{1}A_{2}}{A_{1}} = dfrac{(55N)(2.4m^{2})}{(0.015m^{2})} = 8.8 times 10^{3} N$

Result
2 of 2
$textit$$text{color{#c34632} 8.8 times 10^{3} N $$}$
Step 1
1 of 3
**Given information:**

Force exerted on the hydraulic piston: $F_p=55 mathrm{N}$

Cross-sectional area of the hydraulic piston: $A_p=0.015 mathrm{m^2}$

Cross-sectional area of the piston that the car sits on: $A_c=2.4 mathrm{m^2}$

We need to calculate the weight of the car $F_g$.

Step 2
2 of 3
Because the car is being lifted the pressure of the gravitational force exerted on the cross-sectional area of the piston the car sits on must be at least equal to the pressure exerted by the mechanic on the hydraulic piston in the upward direction so we have:
$$begin{align*}
P_g&=P_c\
frac{F_g}{A_c}&=frac{F_p}{A_p}
end{align*}$$
we solve this equation for $F_g$ to find the weight of the car
$$begin{align*}
F_g&=frac{F_p A_c}{A_p}\
&=frac{55cdot 2.4}{0.015}\
&=boxed{8800 mathrm{N}}
end{align*}$$
Result
3 of 3
$$F_g=8800 mathrm{N}$$
Exercise 25
Solution 1
Solution 2
Step 1
1 of 5
hfill . \
textbf{Given:} \
$F_1 = 400 text{N}$ \
$F_2 = 1100 text{N}$ \

textbf{Find:} \
$frac{A_1}{A_2} = ?$ \

Step 2
2 of 5
hfill . \
textbf{Calculation:}\
To get get an expression for the ratios of the areas of the pistons, we start with the equation below

$$
F_2 = frac{F_1A_2}{A_1}
$$

Step 3
3 of 5
hfill . \
Isolating $A_1$ and $A_2$ on the left side of the equation, we have

$$
frac{A_1}{A_2} = frac{F_1}{F_2}
$$

Step 4
4 of 5
hfill . \
Plugging in the given values, we have

$$
frac{A_1}{A_2} = frac{400}{1100}
$$

$$
boxed{frac{A_1}{A_2} = 0.36}
$$

Result
5 of 5
$$
frac{A_1}{A_2} = 0.36
$$
Step 1
1 of 2
$F_{2} = dfrac{F_{1}A_{2}}{A_{1}}$

So ;

$dfrac{A_{2}}{A_{1}} = dfrac{F_{2}}{F_{1}} = dfrac{400 N}{1100N} = 0.4$

Result
2 of 2
$textit$$text{color{#c34632}0.4$$}$
Exercise 26
Solution 1
Solution 2
Step 1
1 of 7
hfill . \
textbf{Given:} \
$A_1 = 7.0 times 10^{-2} text{m}^2$ \
$A_2 = 2.1 times 10^{-1} text{m}^2$ \
$F_2 = 2.7 times 10^3 text{N}$ \
$h_2 = 0.20 text{m}$ \

textbf{Find:} \
(a) $F_1 = ?$ \
(b) $h_1 = ?$

Step 2
2 of 7
hfill . \
textbf{Calculation:}\
textbf{(a)} \
To get an exression for $F_1$, we start with the equation below

$$
F_2 = frac{F_1A_2}{A_1}
$$

Isolating $F_1$ on the left side of the equation, we have

$$
F_1 = frac{F_2A_1}{A_2}
$$

Step 3
3 of 7
hfill . \
Plugging in the given values

$$
F_1 = frac{(2.7 times 10^3) cdot (7.0 times 10^{-2})}{(2.1 times 10^{-1})}
$$

$$
boxed{F_1 = 900 text{N}}
$$

Step 4
4 of 7
hfill . \
textbf{(b)} \
To get an expression relating $A$ and $h$, we assume that the volumes traced by the movements of the two pistons are equal thus we have

$$
V_1 = V_2
$$

Since $V = Ah$, we can express the equation above as follows

$$
A_1h_1 = A_2h_2
$$

Step 5
5 of 7
hfill . \
Isolating $h_1$ on the left side of the equation, we have

$$
h_1 = frac{A_2h_2}{A_1}
$$

Step 6
6 of 7
hfill . \
Plugging the given values

$$
h_1 = frac{(2.1 times 10^{-1}) cdot (0.20)}{(7.0 times 10^{-2})}
$$

$$
boxed{h_1 = 0.60 text{m}}
$$

Result
7 of 7
(a) $F_1 = 900 text{N}$

(b) $h_1 = 0.60 text{m}$

Step 1
1 of 2
a)

$F_1 = dfrac{F_2 A_1}{A_2} = dfrac{(2.7e3)*(7.0e-2)}{(2.1e-1)} = 900 N$

b)

$$
h_1 = dfrac{h_2 A_2}{A_1} = dfrac{(0.20)*(2.1e-1)}{(7.0e-2)} = 0.6 m
$$

Result
2 of 2
a) 900 N

b) 0.60 m

Exercise 27
Solution 1
Solution 2
Step 1
1 of 8
hfill . \
textbf{Known:} \
$rho_text{brick} = 1.8rho_text{water}$ \
$rho_text{water} = 1.00 times 10^3 frac{text{kg}}{text{m}^3}$ \
$V = 0.20 text{m}^3$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$F_text{apparent} = ?$ \

Step 2
2 of 8
hfill . \
textbf{Calculation:}\
To solve for the apparent weight of the brick in water, we use the equation below

begin{equation}
F_text{apparent} = F_g – F_text{buoyant}
end{equation}

Step 3
3 of 8
hfill . \
To get an expression for $F_g$, we use the equation

$$
F_g = mg
$$

We know that the definition of density is $rho_text{brick} = frac{m_text{brick}}{V}$. Plugging this into the equation above, we have

begin{equation} tag{2}
F_g = rho_text{brick}Vg
end{equation}

Step 4
4 of 8
hfill . \
To get an expression for the buoyant force, we use the equation

begin{equation} tag{3}
F_text{buoyant} = rho_text{water}Vg
end{equation}

Step 5
5 of 8
hfill . \
Plugging in the Equation (2) and (3) into Equation (1), we have

$$
F_text{apparent} = rho_text{brick}Vg – rho_text{water}Vg
$$

$$
F_text{apparent} = (rho_text{brick} – rho_text{water})Vg
$$

Step 6
6 of 8
hfill . \
Since $rho_text{brick} = 1.8rho_text{water}$, we can express the equation above as follows

$$
F_text{apparent} = (1.8rho_text{water} – rho_text{water})Vg
$$

$$
F_text{apparent} = 0.8rho_text{water}Vg
$$

Step 7
7 of 8
hfill . \
Plugging in the given values, we have

$$
F_text{apparent} = 0.8(1.00 times 10^3)(0.20 text{m}^3)(9.8)
$$

$$
boxed{F_text{apparent} = 1600 text{N}}
$$

Result
8 of 8
$$
F_text{apparent} = 1600 text{N}
$$
Step 1
1 of 2
$F_{apparent} = F_g – F_{buoyant}$

$F_{apparent} = rho_{brick} V g – rho_{water} V g$

$F_{apparent} = (rho_{brick} – rho_{water}) V g$

$F_{apparent} = ((1.8)*(1000) – (1000)) * (0.20) * (9.80)$

$$
F_{apparent} = 1600 N
$$

Result
2 of 2
$$
1600 N
$$
Exercise 28
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Known:} \
$F = 610 text{N}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$V = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To get an expression for the volume of the submerged part of the her body, we use the equation

$$
F = rho Vg
$$

Isolating $V$ on one side of the equation

$$
V = frac{F}{rho g}
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
V = frac{(610)}{(1.0 times 10^3) cdot (9.8)}
$$

$$
boxed{V = 0.062 text{m}^3}
$$

Result
4 of 4
$$
V = 0.062 text{m}^3
$$
Step 1
1 of 2
$F = rho V g$

Solve for V:

$$
V = dfrac{F}{rho g} = dfrac{610}{(1000)*(9.80)} = 0.0622 m^3
$$

Result
2 of 2
$$
0.0622 m^3
$$
Exercise 29
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Known:} \
$F_g = 1250 text{N}$ \
$V = 16.5 times 10^{-3} text{m}^3$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \

textbf{Unknown:} \
$F_text{apparent} = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To solve for the tension in the wire supporting the camera, we determine the apparent weight of the camera using the equation below

$$
F_text{apparent} = F_g – F_text{buoyant}
$$

$$
F_text{apparent} = F_g – rho_text{water}Vg
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
F_text{apparent} = 1250 – (1.0 times 10^3) cdot (16.5 times 10^{-3}) cdot (9.8)
$$

$$
boxed{F_text{apparent} = 1090 text{N}}
$$

Result
4 of 4
$$
F_text{apparent} = 1090 text{N}
$$
Step 1
1 of 2
$F = F_g – F_{bouyant}$

$F = F_g – rho_{bouyant} V g$

$F = 1250 – (1000)*(16.5e-3)*(9.80)$

$$
F = 1090 N
$$

Result
2 of 2
$$
1090 N
$$
Exercise 30
Solution 1
Solution 2
Step 1
1 of 7
hfill . \
textbf{Known:} \
$rho_text{foam} = 0.10rho_text{water}$ \
$V_text{foam} = 1.0 text{m} times 1.0 text{m} times 0.10 text{m}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \

textbf{Unknown:} \
$F_text{brick} = ?$ \

Step 2
2 of 7
hfill . \
textbf{Calculation:}\
The total weight $F_g$ of the brick and the plastic foam is given by the equation

$$
F_g = F_text{brick} + F_text{foam}
$$

Step 3
3 of 7
hfill . \
To get an expression for $F_text{brick}$, we use the equation below

$$
F_text{apparent} = F_g – F_text{buoyant}
$$

$$
F_text{apparent} = (F_text{brick} + rho_text{foam}V_text{foam}g) – rho_text{water}V_text{foam}g
$$

Step 4
4 of 7
hfill . \
According to the problem, the buoyant force must equalize the weight of the brick, thus we must set the apparent weight to 0

$$
0 = (F_text{brick} + rho_text{foam}V_text{foam}g) – rho_text{water}V_text{foam}g
$$

Isolating $F_text{brick}$ on the left side of the equation, we have

$$
F_text{brick} = rho_text{water}V_text{foam}g – rho_text{foam}V_text{foam}g
$$

$$
F_text{brick} = (rho_text{water} – rho_text{foam})V_text{foam}g
$$

Step 5
5 of 7
hfill . \
Since $rho_text{foam} = 0.10rho_text{water}$, we have

$$
F_text{brick} = (rho_text{water} – 0.10rho_text{water})V_text{foam}g
$$

$$
F_text{brick} = 0.90rho_text{water}V_text{foam}g
$$

Step 6
6 of 7
hfill . \
Plugging in the given values

$$
F_text{brick} = 0.90 cdot (1.0 times 10^3) cdot (1.0 times 1.0 times 0.1) cdot (9.8)
$$

$$
boxed{F_text{brick} = 880 text{N}}
$$

Result
7 of 7
$$
F_text{brick} = 880 text{N}
$$
Step 1
1 of 2
$F_{bricks} + F_{foam} = F_{buoyant}$

$F_{bricks} + rho_{foam} V g = rho_{water} V g$

$F_{bricks} = rho_{water} V g – rho_{foam} V g$

$F_{bricks} = (rho_{water} – rho_{foam}) V g$

$F_{bricks} = (1000 – (0.10)*(1000)) * (1.0*1.0*0.10) * (9.80)$

$$
F_{bricks} = 882 N
$$

Result
2 of 2
$$
882 N
$$
Exercise 31
Solution 1
Solution 2
Step 1
1 of 6
hfill . \
textbf{Known:} \
$F_text{canoe} = 480 text{N}$ \
$rho_text{foam} = 0.10rho_text{water}$ \
$rho_text{water} = 1.0 times 10^3 frac{text{kg}}{text{m}^3}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \

textbf{Unknown:} \
$V= ?$ \

Step 2
2 of 6
hfill . \
textbf{Calculation:}\
According to the problem, the buoyant force of the foam must equalize the combined weight of the canoe and the foam. We can express this using the equation below

$$
F_text{buoyant} = F_text{foam} + F_text{canoe}
$$

$$
rho_text{water}Vg = rho_text{foam}Vg + F_text{canoe}
$$

Step 3
3 of 6
hfill . \
Isolating $V$ on the left side of the equation

$$
rho_text{water}Vg – rho_text{foam}Vg = F_text{canoe}
$$

$$
(rho_text{water} – rho_text{foam})Vg = F_text{canoe}
$$

$$
V = frac{F_text{canoe}}{(rho_text{water} – rho_text{foam})g}
$$

Step 4
4 of 6
hfill . \
Since $rho_text{foam} = 0.10rho_text{water}$, we can express the equation above as follows

$$
V = frac{F_text{canoe}}{(rho_text{water} – 0.10rho_text{water})g}
$$

$$
V = frac{F_text{canoe}}{0.90rho_text{water}g}
$$

Step 5
5 of 6
hfill . \
Plugging in the given values, we have

$$
V = frac{(480)}{(0.90) cdot (1.0 times 10^3) cdot (9.8)}
$$

$$
boxed{V = 0.054 text{m}^3}
$$

Result
6 of 6
$$
V = 0.054 text{m}^3
$$
Step 1
1 of 2
$F_{canoe} + F_{foam} = F_{buoyant}$

$F_{canoe} + rho_{foam} V g = rho_{water} V g$

$F_{canoe} = rho_{water} V g – rho_{foam} V g$

$F_{canoe} = (rho_{water} – rho_{foam}) V g$

Solve for V:

$V = dfrac{F_{canoe}}{(rho_{water} – rho_{foam}) g}$

$V = dfrac{480}{(1000 – (0.10)*(1000)) * (9.80)}$

$$
V = 0.0544 m^3
$$

Result
2 of 2
$$
0.0544 m^3
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New