Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 348: Section Review

Exercise 10
Solution 1
Solution 2
Step 1
1 of 3
hfill . \
textbf{(a)} \
The atmospheric pressure outside of the two boxes is equal.
Step 2
2 of 3
hfill . \
textbf{(b)} \
To solve for the magnitude of the total force exerted by the air, we use the equation below

$$
P = frac{F}{A}
$$

Isolating $F$ on one side of the equation, we have

$$
F = PA
$$

Step 3
3 of 3
hfill . \
We can infer from the equation above that, since the box with dimensions $20 text{cm} times 20 text{cm} times 40 text{cm}$ have larger surface area, then the magnitude of the force of air exerted on it will also be larger.
Step 1
1 of 3
a)

The pressure on the boxes is independent of the dimensions of the boxes and the pressures are the same.

Step 2
2 of 3
b)

According to the equation $F=PA$, the force on the boxes is proportional to the area of the boxes. Therefore the force on the box with dimensions 20x20x40 is greater.

Result
3 of 3
a,b) See the explanation.
Exercise 11
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Given:} \
$P_1 = 1.01325 times 10^5 text{Pa}$ (Mean sea-level atmospheric pressure) \
$V_1 = 25.0 text{m}^3$ \
$P_2 = 0.82 times 10^5 text{Pa}$ \

textbf{Find:} \
$V_2 = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To solve for the final volume $V_2$ of the gas, we use the Boyle’s Law

$$
P_1V_1 = P_2V_2
$$

Isolating $V_2$ on one side of the equation

$$
V_2 = frac{P_1V_1}{P_2}
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
V_2 = frac{(1.01325 times 10^5) cdot (25.0)}{(0.82 times 10^5)}
$$

$$
boxed{V_2 = 30.9 text{m}^3}
$$

Result
4 of 4
$$
V_2 = 30.9 text{m}^3
$$
Step 1
1 of 2
$dfrac{P_2 V_2}{T_2} = dfrac{P_1 V_1}{T_1}$

Temperature is unchanged, therefore:

$P_1 V_1 = P_2 V_2$

Sole for $V_2$:

$V_2 = dfrac{P_1 V_1}{P_2}$

$V_2 = dfrac{(1.01e5)*(25.0)}{(0.82e5)}$

$$
V_2 = 30.8 m^3
$$

Result
2 of 2
$$
30.8 m^3
$$
Exercise 12
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Given:} \
$V_1 = 0.0021 text{m}^3$ \
$P_1 = 1.01325 times 10^5 text{Pa}$ (Atmospheric Pressure) \
$T_1 = 303 text{K}$ \
$V_2 = 0.0003 text{m}^3$ \
$P_2 = 20.1 times 10^5 text{Pa}$ \

textbf{Find:} \
$T_2 = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To solve for the final temperature $T_2$ of air, we use the Combined Gas Law

$$
frac{P_1V_1}{T_1} = frac{P_2V_2}{T_2}
$$

Isolating $T_2$ on the left side of the equation

$$
T_2 = frac{P_2V_2T_1}{P_1V_1}
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
T_2 = frac{(20.1 times 10^5) cdot (0.0003) cdot (303)}{(1.0325 times 10^5) cdot (0.0021)}
$$

$$
boxed{T_2 = 859 text{K}}
$$

Result
4 of 4
$$
T_2 = 859 text{K}
$$
Step 1
1 of 2
$dfrac{P_2 V_2}{T_2} = dfrac{P_1 V_1}{T_1}$

Solve for $T_2$:

$T_2 = dfrac{T_1 P_2 V_2}{P_1 V_1}$

$T_2 = dfrac{(303)*(20.1e5)*(0.0003)}{(1.01e5)*(0.0021)}$

$$
T_2 = 861 K
$$

Result
2 of 2
$$
861 K
$$
Exercise 13
Step 1
1 of 8
hfill . \
textbf{Given:} \
$T_1 = 0 ^circ text{C} = 273 text{K}$ \
$T_2 = 4 ^circ text{C} = 277 text{K}$ (For the first question) \
$T_2 = 8 ^circ text{C} = 281 text{K}$ (For the second question)\
$d_1 = 999.82 frac{text{kg}}{text{m}^3}$ (Density of water at $0 ^circ text{C}$) \

textbf{Find:} \
$d_2 = ?$ at $4 ^circ text{C}$ and $8 ^circ text{C}$\

Step 2
2 of 8
hfill . \
textbf{Calculation:}\
To get an expression for density, we use the Ideal Gas Law

begin{equation}
PV = nRT
end{equation}

Step 3
3 of 8
hfill . \
To express the equation above in terms of mass, we use the equation below

begin{equation} tag{2}
n = frac{m}{M}
end{equation}

Plugging this into the Ideal Gas Law, we have

$$
PV = frac{mRT}{M}
$$

Step 4
4 of 8
hfill . \
Isolating $R$ on the right side of the equation, we have

begin{equation} tag{3}
frac{PVM}{MT} = R
end{equation}

We know that density is given by the equation

$$
d = frac{m}{V}
$$

Then, we can express Equation (3) as follows

begin{equation} tag{4}
frac{PM}{dT} = R
end{equation}

Step 5
5 of 8
hfill . \
Since we can treat $R$ as a proportionality constant, we can express Equation (4) as follows

$$
frac{P_1M_1}{d_1T_1} = frac{P_2M_2}{d_2T_2}
$$

Assuming that the $P$ and $M$ are constant, we now have

$$
d_1T_1 = d_2T_2
$$

Isolating $d_2$ on one side of the equation

begin{equation} tag{5}
d_2 = frac{d_1T_1}{T_2}
end{equation}

Step 6
6 of 8
hfill . \
The density at $T_2 = 277 text{K}$ can now be calculated using the Equation (5)

$$
d_2 = frac{(999.82) cdot (273)}{(277)}
$$

$$
boxed{d_2 = 986 frac{text{kg}}{text{m}^3}}
$$

Step 7
7 of 8
hfill . \
The density at $T_2 = 281 text{K}$ can now be calculated using the Equation (5)

$$
d_2 = frac{(999.82) cdot (273)}{(281)}
$$

$$
boxed{d_2 = 971 frac{text{kg}}{text{m}^3}}
$$

Result
8 of 8
$d_2 = 986 frac{text{kg}}{text{m}^3}$ at $4 ^circ text{C}$

$d_2 = 971 frac{text{kg}}{text{m}^3}$ at $8 ^circ text{C}$

Exercise 14
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Given:} \
$n = 1 text{mol}$ \
$P = 1.01325 times 10^5 text{Pa}$ \
$R = 8.31 frac{text{Pa} cdot text{m}^3}{text{mol} cdot text{K}}$ \
$T = 273 text{K}$ \

textbf{Find:} \
$V = ?$ \

Step 2
2 of 4
hfill . \
textbf{Calculation:}\
To solve for the volume of the gas, we use the Ideal Gas Law

$$
PV = nRT
$$

Isolating $V$ on one side of the equation

$$
V = frac{nRT}{P}
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
V = frac{(1) cdot (8.31) cdot (273)}{(1.01325 times 10^5)}
$$

$$
boxed{V = 0.0225 text{m}^3}
$$

Result
4 of 4
$$
V = 0.0225 text{m}^3
$$
Step 1
1 of 2
$P V = n R T$

Solve for V:

$V = dfrac{n R T}{P}$

$V = dfrac{(1)*(8.31)*(273)}{(1.01e5)}$

$$
V = 0.0225 m^3
$$

Result
2 of 2
$$
0.0225 m^3
$$
Exercise 15
Solution 1
Solution 2
Step 1
1 of 6
hfill . \
textbf{Given:} \
$V = 0.635 text{m}^3$ \
$T = 2.00 ^circ text{C} = 275 text{K}$ \
$P = 1.01325 times 10^5 text{Pa}$ (Atmospheric pressure) \
$R = 8.31 frac{text{Pa} cdot text{m}^3}{text{K} cdot text{mol}}$ \
$M_text{air} = 29 frac{text{g}}{text{mol}}$ \

textbf{Find:} \
$n = ?$ \
$m = ?$ \

Step 2
2 of 6
hfill . \
textbf{Calculation:}\
To solve for the number of moles of air in the refrigerator, we use the Ideal Gas Law

$$
PV = nRT
$$

Isolating $n$ on the left side of the equation

$$
n = frac{PV}{RT}
$$

Step 3
3 of 6
hfill . \
Plugging in the given values, we have

$$
n = frac{(1.01325 times 10^5) cdot (0.635)}{(8.31) cdot (275)}
$$

$$
boxed{n = 28.2 text{mol}}
$$

Step 4
4 of 6
hfill . \
To solve for the mass of the air, we use the equation

$$
m = M_text{air}n
$$

Step 5
5 of 6
hfill . \
Plugging in the given values, we have

$$
m = (29) cdot (28.2)
$$

$$
boxed{m = 818 text{g}}
$$

Result
6 of 6
$n = 28.2 text{moles}$

$$
m = 818 text{g}
$$

Step 1
1 of 2
We suppose that the pressure inside the refrigerator is the atmospheric pressure:

$P = 1 atm = 1.01e5 Pa$

We have:

$n = dfrac{P V}{R T} = dfrac{(1.01e5)*(0.635)}{(8.31)*(2+273)} = 28.1 moles$

The mass of the air:

$$
m = M n = (29)*(28.1) = 814 g
$$

Result
2 of 2
$28.1 moles$

$$
814 g
$$

Exercise 16
Step 1
1 of 2
The equation is:

$n = dfrac{P V}{R T}$

The number of particles only depends on the volume, temperature and pressure and it is independent of size of the particles. Therefore the number of the particles are the same.

Result
2 of 2
the same
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New