Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Table of contents
Textbook solutions

All Solutions

Page 325: Practice Problems

Exercise 19
Solution 1
Solution 2
Step 1
1 of 7
hfill . \
textbf{Given:} \
$m = 0.100 text{kg}$ \
$T_i = -20.0 ^circ text{C}$ \
$T_f = 0.0 ^circ text{C}$ \
$H_f = 3.34 times 10^5 frac{text{J}}{text{kg}}$ \
$C_text{water} = 2060 frac{text{J}}{text{kg} cdot text{K}}$ \
Step 2
2 of 7
hfill . \
textbf{Calculation:}\
We first calculate the heat required to raise the temperature of water from $-20.0 ^circ text{C}$ to $0.0 ^circ text{C}$ using the equation

$$
Q_1 = mC_text{water}(T_f – T_i)
$$

Step 3
3 of 7
hfill . \
Plugging in the given values, we have

$$
Q_1 = (0.100) cdot (2060) cdot (0.00 – (-20.0))
$$

$$
Q_1 = 4120 text{J}
$$

Step 4
4 of 7
hfill . \
We now calculate the heat required to melt the ice using the equation below

$$
Q_2 = mH_f
$$

Step 5
5 of 7
hfill . \
Plugging in the given $m$ and $H_f$, we have

$$
Q_2 = (0.100) cdot (3.34 times 10^5)
$$

$$
Q_2 = 33400 text{J}
$$

Step 6
6 of 7
hfill . \
To get the total amount of heat needed, we just need to add the calculated $Q_1$ and $Q_2$

$$
Q_text{total} = Q_1 + Q_2
$$

$$
Q_text{total} = 4120 + 33400
$$

$$
boxed{Q_text{total} = 3.75 times 10^4 text{J}}
$$

Result
7 of 7
$$
Q_text{total} = 3.75 times 10^4 text{J}
$$
Step 1
1 of 2
Calculate the heat needed to raise the ice temperature:

$Q_{heat ice} = m c_{ice} Delta T$

$Q_{heat ice} = (0.100 Kg)*(2060 J/Kg.C)*(0 – (-20))$

$Q_{heat ice} = 4120 J$

Calculate the heat needed to melt ice:

$Q_{melt} = m H_f$

$Q_{melt} = (0.100)*(3.34e5)$

$Q_{melt} = 33400 J$

The total amount of heat is:

$$
Q = Q_{heat ice} + Q_{melt} = 4120 + 33400 = 3.75 times 10^4 J
$$

Result
2 of 2
$$
3.75 times 10^4 J
$$
Exercise 20
Solution 1
Solution 2
Step 1
1 of 9
hfill . \
textbf{Given:} \
$m = 0.200 text{kg}$ \
$T_1 = 60.0 ^circ text{C}$ \
$T_2 = 100.0 ^circ text{C}$ \
$T_3 = 140.0 ^circ text{C}$ \
$H_v = 2.26 times 10^6 frac{text{J}}{text{kg}}$ \
$C_text{water} = 4180 frac{text{J}}{text{kg} cdot text{K}}$ \
$C_text{steam} = 2020 frac{text{J}}{text{kg} cdot text{K}}$ \
Step 2
2 of 9
hfill . \
textbf{Calculation:} \
We first calculate the heat required to raise the temperature of water from $60.0 ^circ text{C}$ to $100.0 ^circ text{C}$ using the equation

$$
Q_1 = mC_text{water}(T_2 – T_1)
$$

Step 3
3 of 9
hfill . \
Pluggging in the given values, we have

$$
Q_1 = (0.200) cdot (4180) cdot (100.0 – 60.0)
$$

$$
Q_1 = 33440 text{J}
$$

Step 4
4 of 9
hfill . \
We now calculate the heat required to vaporize water into steam using the equation below

$$
Q_2 = mH_v
$$

Step 5
5 of 9
hfill . \
Pluggging in the given $m$ and $H_f$, we have

$$
Q_2 = (0.200) cdot (2.26 times 10^6)
$$

$$
Q_2 = 452000 text{J}
$$

Step 6
6 of 9
hfill . \
We now calculate the heat required to raise the temperature of water from $100.0 ^circ text{C}$ to $140.0 ^circ text{C}$ using the equation

$$
Q_3 = mC_text{steam}(T_3 – T_2)
$$

Step 7
7 of 9
hfill . \
Pluggging in the given values, we have

$$
Q_3 = (0.200) cdot (2020) cdot (140.0 – 100.0)
$$

$$
Q_3 = 16160 text{J}
$$

Step 8
8 of 9
hfill . \
To get the total amount of heat needed, we just need to add the calculated $Q_1$, $Q_2$, and $Q_3$

$$
Q_text{total} = Q_1 + Q_2 + Q_3
$$

$$
Q_text{total} = 33440 + 452000 + 16160
$$

$$
boxed{Q_text{total} = 5.02 times 10^5 text{J}}
$$

Result
9 of 9
$$
Q_text{total} = 5.02 times 10^5 text{J}
$$
Step 1
1 of 2
Calculate the heat needed to raise the water temperature:

$Q_{heat water} = m c_{water} Delta T$

$Q_{heat water} = (0.200 Kg)*(4180 J/Kg.C)*(100 – 60)$

$Q_{heat water} = 33440 J$

Calculate the heat needed to vaporize water:

$Q_{vaporization} = m H_v$

$Q_{vaporization} = (0.200)*(2.26e6)$

$Q_{vaporization} = 452000 J$

Calculate the heat needed to raise the vapor temperature:

$Q_{heat vapor} = m c_{vapor} Delta T$

$Q_{heat vapor} = (0.200 Kg)*(2020 J/Kg.C)*(140 – 100)$

$Q_{heat vapor} = 16160 J$

The total amount of heat is:

$$
Q = 33440 + 452000 + 16160 = 5.02 times 10^5 J
$$

Result
2 of 2
$$
5.02 times 10^5 J
$$
Exercise 21
Solution 1
Solution 2
Step 1
1 of 13
hfill . \
textbf{Given:} \
$m = 0.3 text{kg}$ \
$T_1 = -30.0 ^circ text{C}$ \
$T_2 = 0.0 ^circ text{C}$ \
$T_2 = 100.0 ^circ text{C}$ \
$T_4 = 130.0 ^circ text{C}$ \
$H_f = 3.34 times 10^5 frac{text{J}}{text{kg}}$ \
$H_v = 2.26 times 10^6 frac{text{J}}{text{kg}}$ \
$C_text{ice} = 2060 frac{text{J}}{text{kg} cdot text{K}}$ \
$C_text{water} = 4180 frac{text{J}}{text{kg} cdot text{K}}$ \
$C_text{steam} = 2020 frac{text{J}}{text{kg} cdot text{K}}$ \
Step 2
2 of 13
hfill . \
textbf{Calculation:}\
We first calculate the heat required to increase the temperature of ice from $T_1$ to $T_2$ using the equation below

$$
Q_1 = mC_text{ice}(T_2 – T_1)
$$

Step 3
3 of 13
hfill . \
Plugging in the given values, we have

$$
Q_1 = (0.3) cdot (2060) cdot (0.0 – (-30.0))
$$

$$
Q_1 = 18540 text{J}
$$

Step 4
4 of 13
hfill . \
We calculate the heat required to transform ice to liquid water using the equation below

$$
Q_2 = mH_f
$$

Step 5
5 of 13
hfill . \
Plugging in the given values, we have

$$
Q_2 = (0.3) cdot (3.34 times 10^5)
$$

$$
Q_2 = 100200 text{J}
$$

Step 6
6 of 13
hfill . \
We calculate the heat required to increase the temperature of liquid water from $T_2$ to $T_3$ using the equation below

$$
Q_3 = mC_text{water}(T_3 – T_2)
$$

Step 7
7 of 13
hfill . \
Plugging in the given values, we have

$$
Q_3 = (0.3) cdot (4180) cdot (100.0 – 0.0)
$$

$$
Q_3 = 125400 text{J}
$$

Step 8
8 of 13
hfill . \
We calculate the heat required to transform liquid water to steam using the equation below

$$
Q_4 = mH_v
$$

Step 9
9 of 13
hfill . \
Plugging in the given values, we have

$$
Q_4 = (0.3) cdot (2.26 times 10^6)
$$

$$
Q_4 = 678000 text{J}
$$

Step 10
10 of 13
hfill . \
We calculate the heat required to increase the temperature of steam from $T_3$ to $T_4$ using the equation below

$$
Q_5 = mC_text{steam}(T_4 – T_3)
$$

Step 11
11 of 13
hfill . \
Plugging in the given values, we have

$$
Q_5 = (0.3) cdot (2020) cdot (130.0 – 100.0)
$$

$$
Q_5 = 18180 text{J}
$$

Step 12
12 of 13
hfill . \
Finally, we determine the total heat by adding all the calculated heat from $Q_1$ to $Q_5$

$$
Q_text{total} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5
$$

$$
Q_text{total} = 18540 + 100200 + 125400 + 678000 + 18180
$$

$$
boxed{Q_text{total} = 9.40 times 10^5 text{J}}
$$

Result
13 of 13
$$
Q_text{total} = 9.40 times 10^5 text{J}
$$
Step 1
1 of 4
Calculate the heat needed to raise the ice temperature:

$Q_{heat ice} = m c_{ice} Delta T$

$Q_{heat ice} = (0.300 Kg)*(2060 J/Kg.C)*((0.00) – (-30))$

$Q_{heat ice} = 18540 J$

Calculate the heat needed to melt ice:

$Q_{melt} = m H_f$

$Q_{melt} = (0.300)*(3.34e5)$

$Q_{melt} = 100200 J$

Step 2
2 of 4
Calculate the heat needed to raise the water temperature:

$Q_{heat water} = m c_{water} Delta T$

$Q_{heat water} = (0.300 Kg)*(4180 J/Kg.C)*(100 – 0.00)$

$Q_{heat water} = 125400 J$

Calculate the heat needed to vaporize water:

$Q_{vaporization} = m H_v$

$Q_{vaporization} = (0.300)*(2.26e6)$

$Q_{vaporization} = 678000 J$

Calculate the heat needed to raise the vapor temperature:

$Q_{heat vapor} = m c_{vapor} Delta T$

$Q_{heat vapor} = (0.300 Kg)*(2020 J/Kg.C)*(130 – 100)$

$Q_{heat vapor} = 18180 J$

Step 3
3 of 4
The total amount of heat is:

$$
Q = 18540 + 100200 + 125400 + 678000 + 18180 = 9.40 times 10^5 J
$$

Result
4 of 4
$$
9.40 times 10^5 J
$$
Exercise 22
Solution 1
Solution 2
Step 1
1 of 5
hfill . \
textbf{Given:} \
$Q = 75 text{J}$ \
Step 2
2 of 5
hfill . \
textbf{Calculation:}\
We know that the 1st Law of Thermodynamics is given by the equation below

begin{equation}
Delta U = Q – W
end{equation}

Step 3
3 of 5
hfill . \
Since the balloon stays at the same temperature after expansion, its internal energy must not change

$$
Delta U = 0
$$

Plugging this into Equation (1), we have

$$
0 = Q – W
$$

Step 4
4 of 5
hfill . \
Isolating $W$ on one side of the equation

$$
W = Q
$$

Plugging in the given $Q$

$$
boxed{W = 75 text{J}}
$$

Result
5 of 5
$$
W = 75 text{J}
$$
Step 1
1 of 2
The first law of thermodynamics:

$Delta U = Q – W$

The change in thermal energy of an object is equal to the heat added to the
object minus the work done by the object.

The temperature of the balloon is the same, therefore its thermal energy is the same: $Delta U = 0$.

$Delta U = 0 = Q – W$

The balloon absorbed 75 J of heat: $Q=75 J$:

$0 = Q – W$

$0 = 75 – W$

Thus:

$$
W = 75 J
$$

Result
2 of 2
$$
75 J
$$
Exercise 23
Solution 1
Solution 2
Step 1
1 of 4
hfill . \
textbf{Given:} \
$m = 0.40 text{kg}$ \
$Delta T = 5.0 ^circ text{C}$ \
$C_text{aluminum} = 897 frac{text{J}}{text{kg} cdot text{K}}$ \
Step 2
2 of 4
hfill . \
textbf{Calculation:}\
Since the work done by the drill is equal to the heat added to the aluminum, we can write it as follows

$$
W = Q = mC_text{aluminum}Delta T
$$

Step 3
3 of 4
hfill . \
Plugging in the given values, we have

$$
W = (0.40) cdot (897) cdot (5.0)
$$

$$
boxed{W = 1800 text{J}}
$$

Result
4 of 4
$$
W = 1800 text{J}
$$
Step 1
1 of 2
$W = Q = m c_{aluminum} Delta T$

$W = (0.40 Kg) (897 J/kg.C) (5.0 C)$

$$
W = 1800 J
$$

Result
2 of 2
$$
1800 J
$$
Exercise 24
Solution 1
Solution 2
Step 1
1 of 6
hfill . \
textbf{Given:} \
$m = 0.50 text{kg}$ \
$h = 1.5 text{m}$ \
$Delta T = 1.0 ^circ text{C}$ \
$g = 9.8 frac{text{m}}{text{s}^2}$ \
$C_text{lead} = 130 frac{text{J}}{text{kg} cdot text{K}}$
Step 2
2 of 6
hfill . \
textbf{Calculation:}\
The heat needed to increase the temperature of the lead shot by $1.0 ^circ text{C}$ is given by the equation below

$$
Q = mC_text{lead}Delta T
$$

Step 3
3 of 6
hfill . \
The work done by dropping the lead shot $n$ times can be calculated as follows

$$
W_n = nW = nmgh
$$

Step 4
4 of 6
hfill . \
Since $Q$ must be equal to $W_n$, we have

$$
mC_text{lead}Delta T = nmgh
$$

Isolating $n$ on one side of the equation

$$
n = frac{C_text{lead}Delta T}{gh}
$$

Step 5
5 of 6
hfill . \
Plugging in the given values, we have

$$
n = frac{(130) cdot (1.0)}{(9.8) cdot (1.5)}
$$

$$
boxed{n = 9 text{drops}}
$$

Result
6 of 6
$$
n = 9 text{drops}
$$
Step 1
1 of 2
The energy of the shot increases by “$m g h$” per drop. We must drop it N times to raise its energy by “$m c_{lead} Delta T$”.

$N m g h = m c_{lead} Delta T$

Solve for N:

$N = dfrac{c_{lead} Delta T}{g h} = dfrac{(130)*(1.0)}{(9.80)*(1.5)}$

$$
N = 8.8 drops
$$

Result
2 of 2
$$
8.8 drops
$$
Exercise 25
Solution 1
Solution 2
Step 1
1 of 6
hfill . \
textbf{Given:} \
$m = 0.15 text{kg}$ \
$Delta T = 2.0 ^circ text{C}$ \
$W = 0.050 text{J}$ \
$C_text{water} = 4180 frac{text{J}}{text{kg} cdot text{K}}$
Step 2
2 of 6
hfill . \
textbf{Calculation:}\
The heat needed to raise the temperature of the lead shot is given by the equation below

$$
Q = mC_text{water}Delta T
$$

Step 3
3 of 6
hfill . \
The total work done by stirring the cup of tea by $n$ times can be calculated as follows

$$
W_n = nW
$$

Step 4
4 of 6
hfill . \
Since $Q$ must be equal to $W_n$, we have

$$
mC_text{water}Delta T = nW
$$

Isolating $n$ on one side of the equation

$$
n = frac{mC_text{water}Delta T}{W}
$$

Step 5
5 of 6
hfill . \
Plugging in the given values, we have

$$
n = frac{(0.15) cdot (4180) cdot (2.0)}{(0.050)}
$$

$$
boxed{n = 2.6 times 10^4 text{times}}
$$

Result
6 of 6
$$
n = 2.6 times 10^4 text{times}
$$
Step 1
1 of 2
Firstly,we should use $Delta U = m C Delta T$ equation ;

$Delta U =(0.15 kg)(4180J/kg.text{textdegree} C)(2.0 text{textdegree} C)$
$Delta U = 1.3 times 10^{3} J$

For the number of stirs ;

$dfrac{1.3 times 10^{3} J }{0.050 J}=2.6 times 10^{4}$

Result
2 of 2
$textit$$text{color{#c34632} 2.6 times 10^{4} $$}$
Exercise 26
Solution 1
Solution 2
Step 1
1 of 1
$Delta U = Q – W$. This means that you can have a negative $Delta U$ to help cool down things and perform work. An object can perform work by expanding.
Step 1
1 of 3
The first law of thermodynamics states that the change in internal energy $Delta U$ of the system is the sum of the heat added to the system $Q$ and the work done by the system $W$. In other words,
$$
Delta U=Q-W
$$
Since the internal energy of the system is proportional to the temperature of the system if we want to cool down the system we need to have less internal energy at the end of the process or in other words we need to have negative change in the internal energy $Delta U<0$.
Step 2
2 of 3
Looking at the first law of thermodynamics we can see that this can be achieved in two simple cases:
$$ W=0,:Q0$$
The first case corresponds to the system which is not doing any work nor the work is done on it (volume does not change) but it transfers heat to some colder object that it is in contact with.

The second case corresponds to the system which does not exchange heat with its surroundings but it does some work against the forces acting on it (expands).

Step 3
3 of 3
Also, negative change in the internal energy can be achieved by having
$$
Q<W
$$
where the heat is added to the system and the work is done by the system.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Chapter 9: Momentum and Its Conservation
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice