All Solutions
Page 322: Section Review
textbf{(a)} \
To convert Celsius temperature to Kelvin temperature, we use the equation below
$$
T_text{K} = T_text{C} + 273
$$
Plugging in $T_text{C} = 5 ^circ text{C}$
$$
T_text{K} = 5 + 273
$$
$$
boxed{T_text{K} = 278 text{K}}
$$
textbf{(b)} \
To convert Kelvin temperature to Celsius temperature, we use the equation below
$$
T_text{C} = T_text{K} – 273
$$
Plugging in $T_text{K} = 34 text{K}$
$$
T_text{C} = 34 – 273
$$
$$
boxed{T_text{C} = -239 ^circ text{C}}
$$
textbf{(c)} \
To convert Celsius temperature to Kelvin temperature, we use the equation below
$$
T_text{K} = T_text{C} + 273
$$
Plugging in $T_text{C} = 212 ^circ text{C}$
$$
T_text{K} = 212 + 273
$$
$$
boxed{T_text{K} = 485 text{K}}
$$
textbf{(d)} \
To convert Kelvin temperature to Celsius temperature, we use the equation below
$$
T_text{C} = T_text{K} – 273
$$
Plugging in $T_text{K} = 316 text{K}$
$$
T_text{C} = 316 – 273
$$
$$
boxed{T_text{C} = 43 ^circ text{C}}
$$
(b) $T_text{C} = -239 ^circ text{C}$
(c) $T_text{K} = 485 text{K}$
(d) $T_text{C} = 43 ^circ text{C}$
$T_K = T_C + 273 = 5 + 273 = 278 K$
b)
$T_C = T_K – 273 = 34 – 273 = -239 text{textdegree} C$
c)
$T_K = T_C + 273 = 212 + 273 = 485 K$
d)
$T_C = T_K – 273 = 316 – 273 = 43 text{textdegree} C$
b) $-239 text{textdegree} C$
c) $485 K$
d) $43 text{textdegree} C$
To convert Celsius temperature to Kelvin temperature, we use the following equation
$$
T_text{K} = T_text{C} + 273
$$
textbf{(a)} \
Plugging in $T_text{C} = 28 ^circ C$ to Equation (1)
$$
T_text{K} = 28 + 273
$$
$$
boxed{T_text{K} = 301 text{K}}
$$
textbf{(b)} \
Plugging in $T_text{C} = 28 ^circ C$ to Equation (1)
$$
T_text{K} = 154 + 273
$$
$$
boxed{T_text{K} = 427 text{K}}
$$
textbf{(c)} \
Plugging in $T_text{C} = 568 ^circ C$ to Equation (1)
$$
T_text{K} = 568 + 273
$$
$$
boxed{T_text{K} = 841 text{K}}
$$
textbf{(d)} \
Plugging in $T_text{C} = -55 ^circ C$ to Equation (1)
$$
T_text{K} = (-55) + 273
$$
$$
boxed{T_text{K} = 218 text{K}}
$$
textbf{(e)} \
Plugging in $T_text{C} = -184 ^circ C$ to Equation (1)
$$
T_text{K} = (-184) + 273
$$
$$
boxed{T_text{K} = 89 text{K}}
$$
(b) $T_text{K} = 427 text{K}$
(c) $T_text{K} = 841 text{K}$
(d) $T_text{K} = 218 text{K}$
(e) $T_text{K} = 89 text{K}$
b) $T_K = T_C + 273 = 154 + 273 = 427 K$
c) $T_K = T_C + 273 = 568 + 273 = 841 K$
d) $T_K = T_C + 273 = (-55) + 273 = 218 K$
e) $T_K = T_C + 273 = (-184) + 273 = 89 K$
b) $427 K$
c) $841 K$
d) $218 K$
e) $89 K$
In contrast, thin aluminum heats up faster and releases heat faster so the food is more susceptible to burning.
Now consider a whole uncut potato. It has a small contact surface with the pan it is in, so in order to cook the potato faster we cut it up in a way so that it has greater contact surface with the pan and that usually means cutting it up into french fries. The contact surface gets even better if we put the potato into some liquid so we put the french fries into the oil that conducts heat very well.