All Solutions
Page 210: Section Review
$$
theta =55,,^{o}
$$
The lever is the same in both cases, the only difference is the projection of the force that is actively creating the torque:
$$
F_1cdot 1=F_2cdot cos (55,,^{o})
$$
This gives:
$$
F_2=frac{1}{cos (55,,^{o})}cdot F_1
$$
Finally:
$$
boxed{F_2=1.74cdot F_1}
$$
$$
tau_{net}=tau_1+tau_2
$$
$$
tau_{net}=- F_1cdot (0.5cdot d) + F_2cdot (0.5cdot d)
$$
$$
tau_{net}=- 43cdot 0.5cdot 2.4 + 67cdot 0.5cdot 2.4
$$
Finally we get.
$$
boxed{tau_{net}=28.8,,rm{Nm}}
$$
tau_{net}=28.8,,rm{Nm}
$$
– Sphere $(frac{2}{5} mr^2)$
– Solid disk $(frac{1}{2} mr^2)$
– Wheel with mass on the rim $(mr^2)$
The advantage of using the one with the least moment of inertia comes from the equation:
$$
tau=Ialpha
$$
Which shows that with equal torque we can achieve higher angular acceleration which will enable us to reach wanted angular velocity quicker or that we can use less torque.
We need less torque or can achieve higher angular acceleration.
$$
begin{align*}
F&=13,,rm{N}\
r&=0.15,,rm{m}\
omega &=14,,rm{rev/min}\
t&=4.5,,rm{s}
end{align*}
$$
First, lets calculate the torque:
$$
begin{align*}
tau &=Fr\
tau &=13cdot 0.15\
tau &=1.95,,rm{Nm}
end{align*}
$$
Now lets calculate the angular acceleration:
$$
begin{align*}
alpha &=frac{omega}{t}\
alpha &=frac{14cdot 2cdot pi}{60cdot 4.5}\
alpha &=0.3258,,rm{rad/s^2}
end{align*}
$$
Finally we can calculate moment of inertia:
$$
begin{align*}
I &=frac{tau}{alpha}\
I &=frac{1.95}{0.3258}\
end{align*}
$$
$$
boxed{I=5.96,,rm{kgm^2}}
$$
I=5.96,,rm{kgm^2}
$$
In the second case, the force of friction will cause $textbf{significant}$ torque which will then cause higher angular acceleration and therfore the ball will reach bigger angular velocitiy. This will cause the ball to rotate faster, rotating then the exact speed it is moving downhill.