All Solutions
Page 190: Assessment
The algorithm should look like that:
As the Earth moves slower during the summer, the Earth is farther from the Sun during the summer.
$$
boxed{text{The Earth is closer to the Sun during winter and farther during the summer.}}
$$
$$
boxed{text{The areas sweep out by time interval are not the same for Mars and Earth.}}
$$
In mathematical terms, given the equation
$$frac{T^2}{r^3} = frac{4pi^2}{Gm_{s}}$$
Since the mass of the Sun is doubled, $m_s = 2m_s$, thus
begin{align*}
&=frac{4pi^2}{2m_{s}cdot G}\
&=frac{1}{2}left( frac{4pi^2}{Gm_{s}} right)\
intertext{Since,}
&=frac{T^2}{r^3} = frac{4pi^2}{Gm_{s}}\
intertext{Therefore,}
&=frac{4pi^2}{2m_{s}cdot G}\
&=frac{1}{2}left( frac{4pi^2}{Gm_{s}} right)\
intertext{Since,}
&=frac{T^2}{r^3} = frac{4pi^2}{Gm_{s}}\
intertext{Therefore,}
&=boxed{frac{1}{2}left( frac{T^2}{r^3} right)}\
intertext{if the Sun’s mass is doubled.}
end{align*}
$$
begin{align*}
v&=sqrt{Gcdotfrac{m_e}{r}}
end{align*}
$$
Where the $G$ represents the universal gravitational constant, $m_e$ is the mass of the Earth, and $r$ stands for the radius of the satellite orbit.
So the correct answer is:
$$
boxed{text{Mass of the Earth and distance from the Earth.}}
$$
$$
boxed{text{The gravitational force crate a reaction force that acts as a centripetal force.}}
$$
On the other hand, Einstein thought that based on a Galilean principle, there must be some deviation in space around big objects. So he makes a theory that the matter causes that the space to curve around the object, just like the object on the rubber sheet curve the sheet around it.
$$
begin{align*}
g&=Gcdotfrac{m_e}{r^2}
end{align*}
$$
where the $G$ stands for universal gravitation constant, $m_e$ is mass of earth and the $r$ is a distance from the Earth center in which we compute gravitational field.
So, if the mass of Earth is doubled but the radius stays the same:
$$
begin{align*}
g_2&=Gcdotfrac{2cdot{m_e}}{r^2}\
g_2&=2cdot{G}cdotfrac{{m_e}}{r^2}\
g_2&=2cdot{g}
end{align*}
$$
$$
boxed{text{If the mass of the Earth is doubled, the gravitational field will double also.}}
$$
$g = dfrac{G m_E}{R_E^2}$
Where G is universal constant, $m_E$ is the mass of Earth an $r_E$ is the radius of Earth.
$$
begin{align*}
T&=2cdotpisqrtfrac{r^3}{Gcdot{m_J}}
end{align*}
$$
Where the $r$ stands for the radius of orbit of Jupiter satellite, $G$ is universal gravitational constant and $m_J$ is the mass of Jupiter.
Let’s express the mass of Jupiter from the upper equation:
$$
begin{align*}
sqrtfrac{r^3}{Gcdot{m_J}}&=frac{T}{2cdotpi}\
frac{r^3}{Gcdot{m_J}}&=frac{T^2}{4cdotpi^2}\
Gcdot{m_J}&=frac{r^3cdot{4cdotpi^2}}{T^2}\
m_j&=frac{4cdotpi^2cdot{r^3}}{Gcdot{T^2}}
end{align*}
$$
As the $G$ is the constant, we need to know the radius of Jupiter’s satellite orbit and the period of orbits.
$$
begin{align*}
T&=2cdotpisqrtfrac{r^3}{Gcdot{m}}
end{align*}
$$
Where the $r$ stands for the radius of orbit of planet satellite, $G$ is universal gravitational constant and $m$ is the mass of planet.
Let’s express the mass of planet from the upper equation:
$$
begin{align*}
sqrtfrac{r^3}{Gcdot{m}}&=frac{T}{2cdotpi}\
frac{r^3}{Gcdot{m}}&=frac{T^2}{4cdotpi^2}\
Gcdot{m}&=frac{r^3cdot{4cdotpi^2}}{T^2}\
m&=frac{4cdotpi^2cdot{r^3}}{Gcdot{T^2}}
end{align*}
$$
So there is no other way to get the mass of Pluto before discovering its satellite because we can’t implement the equation.
In the upper two pictures, the Sun is not in eclipse focus because there is no intersection of the semi-minor and semi-major axis.
In the lower-left picture, the Sun is on a Planet trajectory, so this is also not possible.
The last picture presents the Sun at a cross-section of semi-minor and semi-major axis, so this is a possible situation.
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
So we can conclude that the magnitude of the gravitational force between the Moon and Earth is the same. But the forces act in opposite directions.
$$
boxed{overrightarrow{F_E}=-overrightarrow{F_M}}
$$
overrightarrow{F_E}=-overrightarrow{F_M}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
So, as the $G$ represents the constant value, it stays unchanged if we change any parameter in the equation.
G=text{const.}
$$
$g = dfrac{G m}{r^2}$
The ratio of the gravitational accelerations is:
$dfrac{g_J}{g_E} = (dfrac{m_J}{m_E}) (dfrac{r_E}{r_J})^2$
$dfrac{g_J}{g_E} = (dfrac{300}{1}) (dfrac{1}{10})^2$
$dfrac{g_J}{g_E} = 3.0$
Thus:
$$
g_J = 3.00 g_E = (3.00) (9.80) = 29.4 m/s^2
$$
29.4 m/s^2
$$
$g = dfrac{G m}{r^2}$
The ratio of the gravitational accelerations is:
$dfrac{g_r}{g_E} = (dfrac{r_E}{r})^2$
(Where $g_r$ is the gravitational acceleration at one Earth radius above the surface of Earth)
$dfrac{g_r}{g_E} = (dfrac{1}{2})^2$
$dfrac{g_r}{g_E} = 0.25$
Thus:
$$
g_r = (0.25) (9.8) = 2.45 m/s^2
$$
2.45 m/s^2
$$
$F = m g$
Thus the force will be doubled.
The mass is increased relative to the yesterday.
b)
The ratio of the weight to mass is equal to the gravitational acceleration, g, that is constant.
b) cosntant

$$
begin{align*}
v&=sqrt{Gcdotfrac{m_e}{r}}
end{align*}
$$
Where the $r$ is the radius of the orbit, from the center of the Earth.
From the equation, we can see that if the satellite moves closer to the Earth, the velocity of the satellite has to be increased to have the satellite in the same position every day.
If the height of the satellite is increased, the speed of the satellite has to be decreased in order to keep the same position.
If the height of the satellite is increased, the speed of the satellite has to be decreased in order to keep the same position.
$$
begin{align*}
T_E&=2cdotpicdotsqrt{frac{r^3_E}{Gcdot{m_S}}}
end{align*}
$$
In case of Jupiter the relation will be:
$$
begin{align*}
T_J&=2cdotpicdotsqrt{frac{r^3_J}{Gcdot{m_S}}}\
T_J&=2cdotpicdotsqrt{frac{left(5.2cdot{r_E}right)^3}{Gcdot{m_S}}}\
T_J&=2cdotpicdotsqrt{frac{left(5.2right)^3cdot{r_E^3}}{Gcdot{m_S}}}\
T_J&=sqrt{(5.2)^3}cdot{2}cdotpicdotsqrt{frac{{r_E^3}}{Gcdot{m_S}}}\
T_J&=sqrt{(5.2)^3}cdot{T_E}\
T_J&=sqrt{(5.2)^3}cdot{1 text{ year}}
end{align*}
$$
$$
boxed{T_J=11.86text{ year}}
$$
T_J=11.86text{ year}
$$
$F = dfrac{(6.67e-11)*(5.9)*(0.047)}{(0.055)^2}$
$$
F = 6.11 times 10^{-9} N
$$
6.11 times 10^{-9} N
$$
– Mass: $m_1 = 5. 9 mathrm{~kg}$;
– Mass: $m_2 = 0.047 mathrm{~kg}$;
– Distance between centers: $d = 0.055 mathrm{~m}$;
**Required:**
– The force $F$;
$$F_g = frac{Gm_1m_2}{r^2}$$
$$begin{align*}
F &= F_g \
&= G frac{m_1m_2}{d^2} \
&= 6.67 times 10^{-11} ,frac{text{Nm}^2}{text{kg}^2} cdot frac{5. 9 mathrm{~kg} cdot 0.047 mathrm{~kg}}{(0.055 mathrm{~m})^2} \
&= 6.1 times 10^{-9} mathrm{~N}
end{align*}$$
$$boxed{ F = 6.1 times 10^{-9} mathrm{~N} }$$
$$
begin{align*}
F&=Gcdotfrac{m_Scdot{m_J}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_S$ and $m_J$ are the mass of the Sun and Jupiter and $r$ is the distance between them. So let’s take this data from the table and substitute it.
$$
begin{align*}
m_S&=1.99cdot{10^{30}}text{ kg}\
m_J&=1.9cdot{10^{27}}text{ kg}\
r&=7.78cdot{10^{11}}text{ m}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{1.99cdot{10^{30}}text{ kg}cdot{1.9cdot{10^{27}}text{ kg}}}{left(7.78cdot{10^{11}}text{ m}right)^2}
end{align*}
$$
$$
boxed{F=4.17cdot{10^{23}}text{ N}}
$$
F=4.17cdot{10^{23}}text{ N}
$$
$$
begin{align*}
F&=Gcdotfrac{m_Scdot{m_T}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_S$ and $m_T$ are the mass of the Sally and Tom and $r$ is the distance between them. So let’s substitute given data.
$$
begin{align*}
m_S&=50text{ kg}\
m_T&=70text{ kg}\
r&=20text{ m}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{50text{ kg}cdot{70text{ kg}}}{left(20text{ m}right)^2}
end{align*}
$$
$$
boxed{F=5.84cdot{10^{-10}}text{ N}}
$$
F=5.84cdot{10^{-10}}text{ N}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ are the mass of two balls and $r$ is the distance between them. So let’s substitute given data.
$$
begin{align*}
m_1&=8text{ kg}\
m_2&=6text{ kg}\
r&=2text{ m}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{8text{ kg}cdot{6text{ kg}}}{left(2text{ m}right)^2}
end{align*}
$$
$$
boxed{F=8cdot{10^{-10}}text{ N}}
$$
F=8cdot{10^{-10}}text{ N}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ are the mass of two balls and $r$ is the distance between them. So let’s substitute given data.
$$
begin{align*}
m_1&=6.8text{ kg}\
m_2&=6.8text{ kg}\
r&=0.218text{ m}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{6.8text{ kg}cdot{6.8text{ kg}}}{left(0.218text{ m}right)^2}
end{align*}
$$
$$
boxed{F=6.49cdot{10^{-8}}text{ N}}
$$
F=6.49cdot{10^{-8}}text{ N}
$$
The force of attraction between us and the Earth can be computed, by the equation:
$$
begin{align*}
F&=Gcdotfrac{mcdot{m_E}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m$ and $m_E$ are the mass of us and the Earth and $r$ is the distance between them. So let’s substitute given data.
$$
begin{align*}
m&=50text{ kg}\
m_2&=5.97cdot{10^{24}}text{ kg}\
r&=6.38cdot{10^6}text{ m}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{50text{ kg}cdot{5.97cdot{10^{24}}text{ kg}}}{left(6.38cdot{10^6}text{ m}right)^2}
end{align*}
$$
$$
boxed{F=489text{ N}}
$$
$bold{b)}$
The weight of us at the surface of the Earth is given by:
$$
begin{align*}
W&=mcdot{g}
end{align*}
$$
where the $g$ stands for the gravitational acceleration on the Earth’s surface. Let’s compute the weight:
$$
begin{align*}
W&=50text{ kg}cdot{9.81 frac{text{ m}}{text{s}^2}}
end{align*}
$$
$$
boxed{W=490.5text{ N}}
$$
b) $W=490.5text{ N}$
$$
begin{align*}
F&=Gcdotfrac{m_ecdot{m_e}}{r^2}\
F&=Gcdotfrac{m^2_e}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_e$ is the mass of electron and $r$ is the distance between them. Let’s express the mass of electron from the equation:
$$
begin{align*}
Gcdot{m^2_e}&=Fcdot{r^2}\
m^2_e&=frac{Fcdot{r^2}}{G}\
m_e&=sqrt{frac{Fcdot{r^2}}{G}}
end{align*}
$$
Let’s substitute the given data and compute the mass of electron:
$$
begin{align*}
F&=5.54cdot{10^{-71}}text{ N}\
r&=1text{ m}\
m_e&=sqrt{frac{5.54cdot{10^{-71}}text{ N}cdot{(1text{ m})^2}}{6.67cdot{10^{-11}} frac{text{ N}cdottext{m}^2}{text{ kg}^2}}}
end{align*}
$$
$$
boxed{m_e=9.11cdot{10^{-31}}text{ kg}}
$$
m_e=9.11cdot{10^{-31}}text{ kg}
$$
The force of attraction by the Earth to a body is given by the equation:
$$
begin{align*}
F&=Gcdotfrac{mcdot{m_E}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_E$ is the mass of the Earth, $m$ is the mass of the body and $r$ is the distance between them. Let’s express the mass of Earth from the equation:
$$
begin{align*}
Gcdot{mcdot{m_E}}&=Fcdot{r^2}\
m_E&=frac{Fcdot{r^2}}{Gcdot{m}}
end{align*}
$$
Let’s substitute the given data and compute the mass of electron:
$$
begin{align*}
F&=9.8text{ N}\
r&=6.4cdot{10^6}text{ m}\
m&=1text{ kg}\
m_E&=frac{9.8text{ N}cdot{left(6.4cdot{10^6}text{ m}right)^2}}{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{1text{ kg}}}
end{align*}
$$
$$
boxed{m_E=60.18cdot{10^{23}}text{ kg}}
$$
$bold{b)}$
The density of the Earth is given by the equation:
$$
begin{align*}
rho&=frac{m_E}{V_E}
end{align*}
$$
The Earth is a ball, so the Earth volume is:
$$
begin{align*}
V_E&=frac{4}{3}cdot{r^3}cdotpi
end{align*}
$$
Let’s substitute and compute:
$$
begin{align*}
rho&=frac{m_E}{frac{4}{3}cdot{r^3}cdotpi}\
rho&=frac{3cdot{m_E}}{4cdot{r^3}cdotpi}\
rho&=frac{3cdot{60.18cdot{10^{23}}text{ kg}}}{4cdot{left(6.4cdot{10^6}text{ m}right)^3}cdotpi}
end{align*}
$$
$$
boxed{rho=5480 frac{text{kg}}{text{m}^3}}
$$
b) $rho=5480 frac{text{kg}}{text{m}^3}$
$$
begin{align*}
left(frac{r_A}{r_B}right)^3&=left(frac{T_A}{T_B}right)^2
end{align*}
$$
If we implement this Law to Earth and Uranus, we get:
$$
begin{align*}
left(frac{r_e}{r_u}right)^3&=left(frac{T_e}{T_u}right)^2\
frac{r^3_e}{r^3_u}&=frac{T^2_e}{T^2_u}
end{align*}
$$
We have to compute Uranus orbital radius so let’s express it:
$$
begin{align*}
r^3_u&=r^3_ecdotfrac{T^2_u}{T^2_e}\
r_u&=r_ecdotsqrtfrac{T^2_u}{T^2_e}
end{align*}
$$
Uranus needs an $84text{ year}$ to circle the Sun, the period of orbit for the Earth is $1text{ year}$. Let’s substitute:
$$
begin{align*}
r_u&=r_ecdotsqrt[3]{frac{left(84text{ year}right)^2}{left(1text{ year}right)^2}}
end{align*}
$$
$$
boxed{r_u=19.2cdot{r_e}}
$$
r_u=19.2cdot{r_e}
$$
$$
begin{align*}
left(frac{r_A}{r_B}right)^3&=left(frac{T_A}{T_B}right)^2
end{align*}
$$
If we implement this Law to Earth and Venus, we get:
$$
begin{align*}
left(frac{r_e}{r_v}right)^3&=left(frac{T_e}{T_v}right)^2\
frac{r^3_e}{r^3_v}&=frac{T^2_e}{T^2_v}
end{align*}
$$
We have to compute Venus orbital radius so let’s express it:
$$
begin{align*}
r^3_v&=r^3_ecdotfrac{T^2_v}{T^2_e}\
r_v&=r_ecdotsqrtfrac{T^2_v}{T^2_e}
end{align*}
$$
Venus needs an $225text{ days}$ to circle the Sun, the period of orbit for the Earth is $365text{ days}$. Let’s substitute:
$$
begin{align*}
r_v&=r_ecdotsqrt[3]{frac{left(225text{ days}right)^2}{left(365text{ days}right)^2}}
end{align*}
$$
$$
boxed{r_v=0.724cdot{r_e}}
$$
r_v=0.724cdot{r_e}
$$
$$
begin{align*}
left(frac{r_A}{r_B}right)^3&=left(frac{T_A}{T_B}right)^2
end{align*}
$$
If we implement this Law to Earth and planet D, we get:
$$
begin{align*}
left(frac{r_E}{r_D}right)^3&=left(frac{T_E}{T_Dv}right)^2\
frac{r^3_E}{r^3_D}&=frac{T^2_E}{T^2_D}
end{align*}
$$
We have to compute planet D orbital period so let’s express it:
$$
begin{align*}
T^2_D&=T^2_Ecdotfrac{r^3_D}{r^3_E}\
T_D&=T_Ecdotsqrt{frac{r^3_D}{r^3_E}}
end{align*}
$$
We have given that $r_D=8cdot{r_E}$, lets substitute:
$$
begin{align*}
T_D&=1text{ year}cdotsqrt{left(frac{8cdot{r_E}}{r_E}right)^3}\
T_D&=1text{ year}cdotsqrt{8^3}
end{align*}
$$
$$
boxed{T_D=22.63text{ years}}
$$
T_D=22.63text{ years}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ is the mass of the spheres,$r$ is the distance between them.
Also, we have given relation:
$$
begin{align*}
m_1&=2cdot{m_2}
end{align*}
$$
Let’s substitute and express the mass of sphere $m_2$ from the equation:
$$
begin{align*}
Gcdot{2cdot{m_2}cdot{m_2}}&=Fcdot{r^2}\
(m_2)^2&=frac{Fcdot{r^2}}{2cdot{G}}\
m_2&=sqrt{frac{Fcdot{r^2}}{2cdot{G}}}
end{align*}
$$
Let’s substitute the given data and compute the mass of sphere $m_2$:
$$
begin{align*}
F&=2.75cdot{10^{-12}}text{ N}\
r&=2.6text{ m}\
m_2&=sqrtfrac{2.75cdot{10^{-12}}text{ N}cdot{left(2.6text{ m}right)^2}}{2cdot{6.67}cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}
end{align*}
$$
$$
boxed{m_2=0.375text{ kg}}
$$
Let’s return for $m_1$:
$$
begin{align*}
m_1&=2cdot{m_2}\
m_1&=2cdot{0.375text{ kg}}
end{align*}
$$
$$
boxed{m_1=0.750text{ kg}}
$$
By the universal gravitational law, we know:
$$
begin{align*}
F_g&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where $G$ stands for the universal gravitational constant, $m_1$ is the mass of the one object, $m_2$ the mass of the second object, and $r$ represents the distance between them.
$$
begin{align*}
F_{EM}&=Gcdotfrac{m_Ecdot{m_M}}{r_{EM}^2}
end{align*}
$$
Here we have given the universal gravitational constant is:
$$
begin{align*}
G&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}
end{align*}
$$
Masses of the Earth and the Moon are:
$$
begin{align*}
m_E&=6cdot{10^{24}} text{kg}\
m_M&=7.3cdot{10^{22}} text{kg}
end{align*}
$$
And the distance between them is:
$$
begin{align*}
r_{EM}&=3.9cdot{10^5} text{ km}
end{align*}
$$
Let’s substitute and compute:
$$
begin{align*}
F_{EM}&=Gcdotfrac{m_Ecdot{m_M}}{r_{EM}^2}\
F_{EM}&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}cdotfrac{6cdot{10^{24}} text{kg}cdot{7.3cdot{10^{22}} text{kg}}}{left(3.9cdot{10^5}cdot{10^3} text{ m}right)^2}\
F_{EM}&=1.92cdot{10^{20}}text{ N}
end{align*}
$$
$$
begin{align*}
F_{SM}&=Gcdotfrac{m_Scdot{m_M}}{r_{SM}^2}\
F_{SM}&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}cdotfrac{2cdot{10^{30}} text{kg}cdot{7.3cdot{10^{22}} text{kg}}}{left(1.5cdot{10^8}cdot{10^3} text{ m}right)^2}\
F_{SM}&=4.33cdot{10^{20}}text{ N}
end{align*}
$$
$$
begin{align*}
frac{F_{EM}}{F_{SM}}&=frac{1.92cdot{10^{20}}text{ N}}{4.33cdot{10^{20}}text{ N}}
end{align*}
$$
$$
boxed{frac{F_{EM}}{F_{SM}}=0.44}
$$
frac{F_{EM}}{F_{SM}}=0.44
$$
$$
begin{align*}
F=f=mucdot{F_N}
end{align*}
$$
where the $mu$ represents the constant of friction, $m_b$ is the mass of a boat, and the $g$ is gravitational constant that is different on an Earth and the Jupiter.
The normal component of gravitational force is explained by Newton’s universal gravitational law:
$$
begin{align*}
F_N&=Gcdotfrac{{m_p}cdot{m_b}}{r_p^2}
end{align*}
$$
Where the $G$ is universal gravitational constant, $m_p$ and $m_b$ stands for the mass of the planet and the boat, and $r_p$ is the distance between the boat center of mass and the planet center of mass, in that case, this is the radius of the planet.
$$
begin{align*}
F&=mucdot{F_N}\
F&=mucdot{G}cdotfrac{m_ecdot{m_b}}{r_e^2}
end{align*}
$$
And the force that has to be applied on the boat at Jupiter will be:
$$
begin{align*}
F_j&=mucdot{G}cdotfrac{m_jcdot{m_b}}{r_j^2}
end{align*}
$$
In this equation, all the data can be found as table values except the coefficient of friction, but it can be expressed from the equation from the upper equation.
$$
begin{align*}
mu&=frac{F}{{G}cdotfrac{m_ecdot{m_b}}{r_e^2}}\
mu&=frac{Fcdot{r_e^2}}{Gcdot{m_ecdot{m_b}}}
end{align*}
$$
And now can be substituted in an equation for the force needed on Jupiter.
$$
begin{align*}
F_j&=frac{Fcdot{r_e^2}}{Gcdot{m_ecdot{m_b}}}cdot{G}cdotfrac{m_jcdot{m_b}}{r_j^2}\
F_j&=frac{Fcdot{r_e^2}}{{m_e}}cdotfrac{m_j}{r_j^2}\
F_j&=Fcdotfrac{r_e^2cdot{m_j}}{r_j^2cdot{m_e}}
end{align*}
$$
$$
begin{align*}
m_e&=5.98cdot{10^{24}}text{ kg}\
m_j&=1.9cdot{10^{27}}text{ kg}\
r_e&=6.38cdot{10^6}text{ m}\
r_j&=7.15cdot{10^7}text{ m}
end{align*}
$$
So let’s compute the force needed:
$$
begin{align*}
F_j&=Fcdotfrac{r_e^2cdot{m_j}}{r_j^2cdot{m_e}}\
F_j&=40text{ N}cdotfrac{left(6.38cdot{10^6}text{ m}right)^2cdot{1.9cdot{10^{27}}text{ kg}}}{left(7.15cdot{10^7}text{ m}right)^2cdot{5.98cdot{10^{24}}text{ kg}}}
end{align*}
$$
$$
boxed{F_j=101.2text{ N}}
$$
F_j=101.2text{ N}
$$
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{r^3}{Gcdot{m}}}
end{align*}
$$
Where $T$ stands for the period of the orbit, $r$ is the radius of the satellite orbit, $G$ is the universal gravitational constant, and $m$ is the mass of the planet (in our case mass of the Saturn).
$$
begin{align*}
r&=1.87cdot{10^8}text{ m}\
T&=23text{ days}=23text{ days}cdot{3600} frac{text{s}}{text{h}}=8.28cdot{10^4}text{ s}
end{align*}
$$
Let fix the upper equation in order to express the mass of the Saturn.
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{r^3}{Gcdot{m}}}\
T^2&=4cdotpi^2cdotfrac{r^3}{Gcdot{m}}\
m&=frac{4cdotpi^2cdot{r}^3}{Gcdot{T^2}}
end{align*}
$$
$$
begin{align*}
m&=frac{4cdotpi^2cdot{r}^3}{Gcdot{T^2}}\
m&=frac{4cdotpi^2cdot{left(1.87cdot{10^8}text{ m}right)}^3}{6.67cdot{10^{-11}} frac{text{ N}cdottext{m}^2}{text{kg}}cdot{left(8.28cdot{10^4}text{ s}right)^2}}
end{align*}
$$
$$
boxed{m=5.65cdot{10^{26}}text{ kg}}
$$
m=5.65cdot{10^{26}}text{ kg}
$$
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{r^3}{Gcdot{m}}}
end{align*}
$$
Where $T$ stands for the period of the orbit, $r$ is the radius of the Moon orbit, $G$ is the universal gravitational constant, and $m$ is the mass of the planet (in our case mass of the Earth).
$$
begin{align*}
r&=3.9cdot{10^8}text{ m}\
T&=27.33text{ days}=27.33text{ days}cdot{24 frac{text{h}}{text{days}}}cdot{3600} frac{text{s}}{text{h}}=2.36cdot{10^6}text{ s}
end{align*}
$$
Let fix the upper equation in order to express the mass of the Earth.
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{r^3}{Gcdot{m}}}\
T^2&=4cdotpi^2cdotfrac{r^3}{Gcdot{m}}\
m&=frac{4cdotpi^2cdot{r}^3}{Gcdot{T^2}}
end{align*}
$$
$$
begin{align*}
m&=frac{4cdotpi^2cdot{r}^3}{Gcdot{T^2}}\
m&=frac{4cdotpi^2cdot{left(3.9cdot{10^8}text{ m}right)}^3}{6.67cdot{10^{-11}} frac{text{ N}cdottext{m}^2}{text{kg}}cdot{left(2.36cdot{10^6}text{ s}right)^2}}
end{align*}
$$
$$
boxed{m=6.3cdot{10^{24}}text{ kg}}
$$
$$
begin{align*}
delta&=frac{m-m_1}{m}cdot{100%}\
delta&=frac{6.3cdot{10^{24}}text{ kg}-6.02cdot{10^{24}}text{ kg}}{6.3cdot{10^{24}}text{ kg}}cdot{100%}\
delta&=4.44%
end{align*}
$$
The difference in results is $4.44%$.
m=6.3cdot{10^{24}}text{ kg}
$$
Given the equation:
$$
begin{equation}
left(frac{r_a}{r_b} right)^3 = left(frac{T_a}{T_b} right)^2
end{equation}
$$
We isolate $r_a$ to get the average distance of Halley’s Comet.
$$
begin{align*}
r_{a}^{3} &= r_{b}^3 left(frac{T_a}{T_b} right)^2\
r_a &= sqrt[3]{r_{b}^3 left(frac{T_a}{T_b} right)^2}
end{align*}
$$
After isolating $r_a$, we can plug-in the given values and obtain the value for $r_a$.
$$
begin{align*}
r_a &= sqrt[3]{(1.0,mathrm{AU})^3 left(frac{74 ,mathrm{y}}{1.0,mathrm{y}} right)^2}\
&= boxed{18,mathrm{AU}}
end{align*}
$$
r_a = 18 ,mathrm{AU}
$$
We know that the Earth’s revolution orbit is elliptical, but let’s assume that it has a circular trajectory. So, for one complete rotation, the Earth swept out the area that is equal to an area of a circle with the radius that represents the distance between the Sun and the Earth.
Let’s mark the speed of area swept out by the letter $x$. The speed of swept out will be:
$$
begin{align*}
x&=frac{A}{T}
end{align*}
$$
where the $A$ represents the area swept out by the Earth in one revolution around the Sun, and $T$ stands for the period of rotation around the Sun.
$$
begin{align*}
r&=1.5cdot{10^{11}}text{ m}
end{align*}
$$
And the period of rotation is equal to:
$$
begin{align*}
T&=365.25text{ days}cdot{24 frac{text{h}}{text{days}}}cdot{3600 frac{text{s}}{text{h}}}=3.156cdot{10^7}text{ s}
end{align*}
$$
As we know the area of the circle is:
$$
begin{align*}
A&=r^2cdotpi
end{align*}
$$
$$
begin{align*}
x&=frac{A}{T}\
x&=frac{r^2cdotpi}{T}\
x&=frac{left(1.5cdot{10^{11}}text{ m}right)^2cdotpi}{3.156cdot{10^7}text{ s}}
end{align*}
$$
$$
boxed{x=2.24cdot{10^{15}} frac{text{m}^2}{text{s}}}
$$
The speed of area swept out by the Moon during the rotation around the Earth has to be computed in the same way.
We have given:
$$
begin{align*}
r&=3.9cdot{10^8}text{ m}\
T&=27.33text{ days}cdot{24 frac{text{h}}{text{days}}}cdot{3600 frac{text{s}}{text{h}}}=2.36cdot{10^6}text{ s}
end{align*}
$$
$$
begin{align*}
x&=frac{A}{T}\
x&=frac{r^2cdotpi}{T}\
x&=frac{left(3.9cdot{10^{8}}text{ m}right)^2cdotpi}{2.36cdot{10^6}text{ s}}
end{align*}
$$
$$
boxed{x=20.25cdot{10^{10}} frac{text{m}^2}{text{s}}}
$$
b) $x=20.25cdot{10^{10}} frac{text{m}^2}{text{s}}$.
$$
begin{align*}
v&=sqrtfrac{Gcdot{m_e}}{r}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_e$ is the mass of the Earth, and $r$ stands for the radius of the orbit.
$m_e=5.98cdot{10^{24}}text{ kg}$.
In our question, we also have given the radius of the orbit $r=4.23cdot{10^7}text{ kg}$.
So let’s substitute and compute the velocity of the satellite:
$$
begin{align*}
v&=sqrtfrac{Gcdot{m_e}}{r}\
v&=sqrtfrac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{5.98cdot{10^{24}}text{ kg}}}{4.23cdot{10^7}text{ m}}
end{align*}
$$
$$
boxed{v=3070 frac{text{m}}{text{s}}}
$$
$$
begin{align*}
T&=2cdotpicdotsqrtfrac{r^3}{Gcdot{m_e}}
end{align*}
$$
The $r$ stands for the radius of the orbit, $G$ is the universal gravitational constant, and $m_e$ represents the mass of the Earth.
$$
begin{align*}
T&=2cdotpicdotsqrtfrac{r^3}{Gcdot{m_e}}\
T&=2cdotpicdotsqrtfrac{left(4.23cdot{10^{7}}text{ m}right)^3}{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{5.98cdot{10^{24}}text{ kg}}}
end{align*}
$$
$$
boxed{T=8.66cdot{10^4}text{ s}}
$$
b) $T=8.66cdot{10^4}text{ s}$
$$
begin{align*}
r&=500text{ km}=5cdot{10^2}cdot{10^3}text{ m}=5cdot{10^5}text{ m}\
m_c&=7cdot{10^{20}}text{ kg}
end{align*}
$$
The acceleration due to gravity is given by the universal gravitational law and described by the equation:
$$
begin{align*}
g&=frac{Gcdot{m}}{r^2}
end{align*}
$$
where the $G$ stands for the universal gravitational constant, $m$ is the mass of the object that is the reason for the gravitation and $r$ is the distance from the object center of mass.
$$
begin{align*}
g&=frac{Gcdot{m_c}}{r^2}\
g&=frac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{7cdot{10^{20}}text{ kg}}}{left(5cdot{10^5}text{ m}right)^2}
end{align*}
$$
$$
boxed{g=0.187 frac{text{m}}{text{s}^2}}
$$
The magnitude of the gravitational force is equal to a product of the gravitational field and the mass of the object.
$$
begin{align*}
W&=mcdot{g}
end{align*}
$$
$$
begin{align*}
W&=mcdot{g}\
W&=90text{ kg}cdot{0.187 frac{text{m}}{text{s}^2}}
end{align*}
$$
$$
boxed{W=16.83text{ N}}
$$
b) $W=16.83text{ N}$
$$
begin{align*}
W&=gcdot{m}
end{align*}
$$
Where the $g$ stands for the acceleration due to a gravitational field, and $m$ is the mass of the object. Let’s express the gravitational field from the upper equation:
$$
begin{align*}
g&=frac{W}{m}
end{align*}
$$
$$
begin{align*}
g&=frac{W}{m}\
g&=frac{8.35text{ N}}{1.25text{ kg}}
end{align*}
$$
$$
boxed{g=6.68 frac{text{m}}{text{s}^2}}
$$
g=6.68 frac{text{m}}{text{s}^2}
$$
$$
begin{align*}
m_M&=7.34cdot{10^{22}}text{ kg}\
m_E&=5.97cdot{10^{24}}text{ kg}\
r&=3.8cdot{10^8}text{ m}
end{align*}
$$
By the law of universal gravitation, the attraction force between two objects is directly proportional to a product of their masses and universal gravitational constant, and reversible proportional to a square of the distance between them. Given by the equation:
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $m_1$ and $m_2$ stand for the object masses, $G$ is the universal gravitational constant, and $r$ represents the distance between objects center of mass.
$$
begin{align*}
F&=Gcdotfrac{m_Ecdot{m_M}}{r^2}
end{align*}
$$
Let’s substitute and compute:
$$
begin{align*}
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{5.97cdot{10^{24}}text{ kg}cdot{7.34cdot{10^{22}}text{ kg}}}{left(3.8cdot{10^8}text{ m}right)^2}
end{align*}
$$
$$
boxed{F=20.24cdot{10^{19}}text{ N}}
$$
$$
begin{align*}
g&=Gcdotfrac{m}{r^2}
end{align*}
$$
where the $G$ stands for the universal gravitational constant, $m$ is the mass of the object and $r$ represents the distance from the object.
$$
begin{align*}
g&=Gcdotfrac{m_E}{r^2}\
g&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{5.97cdot{10^{24}}text{ kg}}{left(3.8cdot{10^8}text{ m}right)^2}
end{align*}
$$
$$
boxed{g=2.76cdot{10^{-3}} frac{text{m}}{text{s}^2}}
$$
b) $g=2.76cdot{10^{-3}} frac{text{m}}{text{s}^2}$
$$
begin{align*}
m_1&=m_2=1text{ kg}\
r&=1text{ m}
end{align*}
$$
By the law of universal gravitation, the attraction force between two objects is directly proportional to a product of their masses and universal gravitational constant, and reversible proportional to a square of the distance between them. Given by the equation:
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $m_1$ and $m_2$ stand for the object masses, $G$ is the universal gravitational constant, and $r$ represents the distance between objects center of mass.
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}cdotfrac{1text{kg}cdot{1text{kg}}}{left(1text{m}right)^2}
end{align*}
$$
$$
boxed{F=6.67cdot{10^{-11}}text{ N}}
$$
F=6.67cdot{10^{-11}}text{ N}
$$
$$
begin{align*}
W&=gcdot{m}
end{align*}
$$
Also, we have the equation for the gravitational field of the Earth at some point given by the relation:
$$
begin{align*}
g&=Gcdotfrac{m_E}{r^2}
end{align*}
$$
where the $G$ stands for the universal gravitational constant, $m_E$ is the mass of the Earth, and $r$ represents the distance from the Earth center.
$$
begin{align*}
W&=gcdot{m}\
W&=Gcdotfrac{m_E}{r_E}cdot{m}\
W&=Gcdotfrac{m_Ecdot{m}}{r_E^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_E$ and $m$ are the mass of the Earth and spacecraft, and the $r_E$ represents the radius of the Earth because this is the distance of the spacecraft from the Earth center.
The weight of the object distance from the Earth can be computed as:
$$
begin{align}
W&=Gcdotfrac{m_Ecdot{m}}{r^2}
end{align}
$$
Where the $r$ represents the distance from the Earth center.
Let’s express the mass of the spacecraft:
$$
begin{align*}
m&=frac{Wcdot{r_E^2}}{Gcdot{m_E}}
end{align*}
$$
Now, let’s substitute and compute the mass of the spacecraft:
$$
begin{align*}
m&=frac{Wcdot{r_E^2}}{Gcdot{m_E}}\
m&=frac{7.2cdot{10^3}text{ N}cdot{left(6.38cdot{10^6}text{ m}right)^2}}{6.67cdot{10^{-11}} frac{text{N}cdot{text{m}^2}}{text{kg}^2}cdot{5.98cdot{10^{24}}text{ kg}}}\
m&=734.8text{ kg}
end{align*}
$$
$$
begin{align*}
r&=r_E+h
end{align*}
$$
Let’s substitute all given into the first equation and compute the weight of spacecraft at height $h=6.38cdot{10^6}text{ m}$ from the Earth surface.
$$
begin{align*}
W&=Gcdotfrac{m_Ecdot{m}}{left(r_e+hright)^2}\
W&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{5.98cdot{10^{24}}text{ kg}cdot{734.8text{ kg}}}{left(6.38cdot{10^6}text{ m}+6.38cdot{10^6}text{ m}right)^2}
end{align*}
$$
$$
boxed{W=1800text{ N}}
$$
bold{b)}
$$
Let’s do the same for the height of $h=1.28cdot{10^7}text{ m}$ above the Earth surface. Let’s substitute:
$$
begin{align*}
W&=Gcdotfrac{m_Ecdot{m}}{left(r_e+hright)^2}\
W&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{5.98cdot{10^{24}}text{ kg}cdot{734.8text{ kg}}}{left(6.38cdot{10^6}text{ m}+1.28cdot{10^7}text{ m}right)^2}
end{align*}
$$
$$
boxed{W=796.7text{ N}}
$$
b) $W=796.7text{ N}$
$$
begin{align}
W&=gcdot{m}
end{align}
$$
Also, we have the equation for the gravitational field of the Earth at some point given by the relation:
$$
begin{align}
g&=Gcdotfrac{m_E}{r^2}
end{align}
$$
where the $G$ stands for the universal gravitational constant, $m_E$ is the mass of the Earth, and $r$ represents the distance from the Earth center.
$$
begin{align*}
W&=Gcdotfrac{m_Ecdot{m}}{r^2}
end{align*}
$$
Let’s find the height at which we have half of the initial weight.
At some height the distance from the Earth center will be:
$$
begin{align*}
r&=r_E+h
end{align*}
$$
where the $r_E$ represents the Earth radius.
$$
begin{align*}
W&=frac{1}{2}cdot{W_E}\
Gcdotfrac{m_Ecdot{m}}{r^2}&=frac{1}{2}cdot{Gcdotfrac{m_Ecdot{m}}{r_E^2}}\
frac{1}{r^2}&=frac{1}{2}cdotfrac{1}{r_E^2}
end{align*}
$$
We get the relation that have to be true:
$$
begin{align*}
r^2&=2cdot{r_E}^2\
left(r_E+hright)^2&=2cdot{r_E}^2\
0&=r_E^2+2cdot{r_E}cdot{h}+h^2-2cdot{r_E^2}
end{align*}
$$
We get the quadratic equation that we have to solve:
$$
begin{align*}
h^2+2cdot{r_E}cdot{h}-r_E^2=0
end{align*}
$$
$$
begin{align*}
h_{12}&=frac{-2cdot{r_E}pmsqrt{4cdot{r_E^2}+4cdot{r_E^2}}}{2}\
h_{12}&=frac{-2cdot{r_E}pmsqrt{8cdot{r_E^2}}}{2}\
h_{12}&=frac{-2cdot{r_E}pm{2cdotsqrt{2}cdot{r_E}}}{2}\
h_{12}&=left(-1pmsqrt{2}right)cdot{r_E}
end{align*}
$$
$$
begin{align*}
h&=left(-1+sqrt{2}right)cdot{r_E}\
h&=0.414cdot{r_E}
end{align*}
$$
If we substitute the radius of the Earth we get the needed height above the surface:
$$
begin{align*}
h&=0.414cdot{6.38cdot{10^3}text{ km}}
end{align*}
$$
$$
boxed{h=2.64cdot{10^3}text{ km}}
$$
h=2.64cdot{10^3}text{ km}
$$
$$
begin{align*}
m_1&=m_2\
r&=30text{ m}\
F&=2cdot{10^{-7}}text{ N}
end{align*}
$$
And we have to compute the mass of the objects and the initial acceleration of the object as a result of attraction force.
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $m_1$ and $m_2$ stand for the object masses, $G$ is the universal gravitational constant, and $r$ represents the distance between objects center of mass.
$$
begin{align*}
F&=Gcdotfrac{m^2}{r^2}
end{align*}
$$
Let’s express the mass from this equation:
$$
begin{align*}
m^2&=frac{Fcdot{r^2}}{G}\
m&=sqrt{frac{Fcdot{r^2}}{G}}
end{align*}
$$
$$
begin{align*}
m&=sqrt{frac{2cdot{10^{-7}text{ N}}cdot{left(30text{ m}right)^2}}{6.67cdot{10^{-11}}frac{text{N}cdot{text{m}^2}}{text{kg}}}}
end{align*}
$$
$$
boxed{m=1642.76text{ kg}}
$$
$$
begin{align*}
a&=frac{F}{m}
end{align*}
$$
$$
begin{align*}
a&=frac{F}{m}\
a&=frac{2cdot{10^{-7}}text{ N}}{1642.76text{ kg}}
end{align*}
$$
$$
boxed{a=1.22cdot{10^{-10}}frac{text{m}}{text{s}^2}}
$$
b) $a=1.22cdot{10^{-10}}frac{text{m}}{text{s}^2}$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ stands for the mass of the first and the second object, and $r$ is the distance between its center of mass.
$$
begin{align*}
W_1&=m_1cdot{g}\
m_1&=frac{W_1}{g}\
m_1&=frac{9.8cdot{10^2}text{ N}}{9.8 frac{text{m}}{text{s}^2}}\
m_1&=100text{ kg}
end{align*}
$$
$$
begin{align*}
W_2&=m_2cdot{g}\
m_2&=frac{W_2}{g}\
m_2&=frac{1.96cdot{10^2}text{ N}}{9.8 frac{text{m}}{text{s}^2}}\
m_2&=20text{ kg}
end{align*}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}\
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}cdotfrac{100text{ kg}cdot{20text{ kg}}}{left(4text{ m}right)^2}
end{align*}
$$
$$
boxed{F=83.375cdot{10^{-10}}text{ N}}
$$
F=83.375cdot{10^{-10}}text{ N}
$$
$$
begin{align}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ stands for the mass of the first and the second object, and $r$ is the distance between its center of mass.
$$
begin{align*}
F&=Gcdotfrac{m_Ecdot{m_M}}{r^2}
end{align*}
$$
Let’s fix the equation to express the mass of the Moon. First, let’s multiply both sides by $r^2$:
$$
begin{align*}
Fcdot{r^2}&=Gcdot{m_Ecdot{m_M}}
end{align*}
$$
Now, we can express the mass of the Moon as:
$$
begin{align*}
m_M&=frac{Fcdot{r^2}}{Gcdot{m_E}}
end{align*}
$$
$$
begin{align*}
m_M&=frac{1.9cdot{10^{20}}text{ N}cdot{left(3.9cdot{10^8}right)^2}}{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}}cdot{5.97cdot{10^{24}}text{ kg}}}
end{align*}
$$
$$
boxed{m_M=7.26cdot{10^{22}}text{ kg}}
$$
m_M=7.26cdot{10^{22}}text{ kg}
$$
$$
begin{align*}
W&=mcdot{g}
end{align*}
$$
where the $m$ stands for the mass of an object, and $g$ represents the gravitational field.
$$
begin{align*}
g&=frac{W}{m}
end{align*}
$$
let’s substitute and compute the result.
$$
begin{align*}
g&=frac{145.6text{ N}}{91text{ kg}}
end{align*}
$$
$$
boxed{g=1.6 frac{text{m}}{text{s}^2}}
$$
g=1.6 frac{text{m}}{text{s}^2}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ stands for the mass of the first and the second object, and $r$ is the distance between its center of mass.
$$
begin{align*}
F&=Gcdotfrac{m_ecdot{m_p}}{r^2}
end{align*}
$$
Let’s substitute all given data:
$$
begin{align*}
F&=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdotfrac{9.1cdot{10^{-31}}text{ kg}cdot{1.7cdot{10^{-27}}text{ kg}}}{left(0.59cdot{10^{-10}}text{ m}right)^2}
end{align*}
$$
The attraction force between electron and proton is:
$$
boxed{F=2.96cdot{10^{-47}}text{ N}}
$$
F=2.96cdot{10^{-47}}text{ N}
$$
$$
begin{align*}
F&=Gcdotfrac{m_1cdot{m_2}}{r^2}
end{align*}
$$
Where the $G$ stands for the universal gravitational constant, $m_1$ and $m_2$ stands for the mass of the first and the second object, and $r$ is the distance between its center of mass.
As we have the two objects of the same mass, our equation becomes:
$$
begin{align*}
F&=Gcdotfrac{m^2}{r^2}
end{align*}
$$
$$
begin{align*}
m&=8text{ kg}\
r&=5text{ m}
end{align*}
$$
Let’s substitute and compute the gravitational force between the spheres:
$$
begin{align*}
F&=6.67cdot{10^{-11}} frac{text{ N}cdottext{ m}^2}{text{ kg}^2}cdotfrac{left(8text{ kg}right)^2}{left(5text{ m}right)^2}
end{align*}
$$
$$
boxed{F=17.08cdot{10^{-11}}text{ N}}
$$
$$
begin{align*}
m&=8text{ kg}\
r&=50text{ m}
end{align*}
$$
Let’s substitute and compute the gravitational force between the spheres:
$$
begin{align*}
F&=6.67cdot{10^{-11}} frac{text{ N}cdottext{ m}^2}{text{ kg}^2}cdotfrac{left(8text{ kg}right)^2}{left(50text{ m}right)^2}
end{align*}
$$
$$
boxed{F=17.08cdot{10^{-13}}text{ N}}
$$
b) $F=17.08cdot{10^{-13}}text{ N}$
$$
begin{align}
W&=mcdot{g}
end{align}
$$
The magnitude of the gravitational field at some distance from the object center of mass is defined by the universal gravitational law and described by the equation:
$$
begin{align}
g&=frac{Gcdot{m}}{r^2}
end{align}
$$
where the $G$ stands for the universal gravitational constant, $m$ is the mass of the object, and $r$ is the distance from the point center of mass.
$$
begin{align*}
m&=frac{W}{g}\
m&=frac{637text{ N}}{9.8 frac{text{m}}{text{s}^2}}\
m&=65text{ kg}
end{align*}
$$
$$
begin{align*}
g&=frac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{6.24cdot{10^{23}}text{ kg}}}{left(3.4cdot{10^6}text{ m}right)^2}
end{align*}
$$
Now, we have to compute the gravitational field at Mars:
$$
begin{align*}
g_m=3.6 frac{text{m}}{text{s}^2}
end{align*}
$$
Now, we can substitute into the first equation and compute the weight of the body on Mars:
$$
begin{align*}
W_m&=mcdot{g_m}\
W_m&=65text{ kg}cdot{3.6 frac{text{m}}{text{s}^2}}
end{align*}
$$
$$
boxed{W_m=234text{ N}}
$$
W_m=234text{ N}
$$
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{r^3}{Gcdot{m_p}}}
end{align*}
$$
where the $r$ represents orbital radius, $G$ is universal gravitational constant, and $m_p$ is it the mass of the planet.
We have to compute the orbital period if the orbital radius is twice the original, be aware of this. Let’s substitute all:
$$
begin{align*}
T&=2cdotpicdotsqrt{frac{left(2cdot{3.9cdot{10^8}text{ m}}right)^3}{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{5.98cdot{10^{24}}text{ kg}}}}
end{align*}
$$
Fix the math in order to get result:
$$
boxed{T=6.85cdot{10^6}text{ s}}
$$
T=6.85cdot{10^6}text{ s}
$$
$$
begin{align}
g&=frac{Gcdot{m}}{r^2}
end{align}
$$
Where the $G$ stands for the universal gravitational constant, $m$ is the mass of the Earth, and the $r$ represents the distance from the Earth’s center of mass.
From the table $7-1$ we can find the original mass of the Earth and it’s radius:
$$
begin{align*}
m&=5.98cdot{10^{24}}text{ kg}\
r&=6.38cdot{10^6}text{ m}
end{align*}
$$
Let’s substitute into the first equation and compute the acceleration due to gravity:
$$
begin{align*}
g_1&=frac{Gcdot{m_1}}{r^2}\
g_1&=frac{Gcdot{3cdot{m}}}{r^2}\
g_1&=frac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{3cdot{5.98cdot{10^{24}}text{ kg}}}}{left(6.38cdot{10^6}text{ m}right)^2}
end{align*}
$$
$$
boxed{g_1=29.4 frac{text{m}}{text{s}^2}}
$$
Let’s substitute into the first equation and compute the acceleration due to gravity:
$$
begin{align*}
g_2&=frac{Gcdot{m}}{(r_2)^2}\
g_2&=frac{Gcdot{{m}}}{left(3cdot{r}right)^2}\
g_2&=frac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{{5.98cdot{10^{24}}text{ kg}}}}{left(3cdot{6.38}cdot{10^6}text{ m}right)^2}
end{align*}
$$
$$
boxed{g_2=1.09 frac{text{m}}{text{s}^2}}
$$
Let’s substitute into the first equation and compute the acceleration due to gravity:
$$
begin{align*}
g_3&=frac{Gcdot{m_3}}{(r_3)^2}\
g_3&=frac{Gcdot{2cdot{m}}}{left(2cdot{r}right)^2}\
g_3&=frac{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}cdot{2cdot{5.98cdot{10^{24}}text{ kg}}}}{left(2cdot{6.38}cdot{10^6}text{ m}right)^2}
end{align*}
$$
$$
boxed{g_3=4.9 frac{text{m}}{text{s}^2}}
$$
b) $g_2=1.09 frac{text{m}}{text{s}^2}$
c) $g_3=4.9 frac{text{m}}{text{s}^2}$
$$
begin{align*}
W&=mcdot{g}
end{align*}
$$
$$
begin{align*}
W_2&=mcdot{g_2}\
0.75cdot{W}&=mcdot{g_2}
end{align*}
$$
Let’s substitute the original weight from the first equation and express new gravitational field:
$$
begin{align*}
0.75cdot{mcdot{g}}&=mcdot{g_2}\
g_2&=0.75cdot{g}\
g_2&=0.75cdot{9.8frac{text{m}}{text{s}^2}}
end{align*}
$$
$$
boxed{g=7.35frac{text{m}}{text{s}^2}}
$$
g=7.35frac{text{m}}{text{s}^2}
$$
$$
begin{aligned}
T=2 pi sqrt{frac{r^{3}}{G m_{S}}}
end{aligned}
$$
where $T$ is a period of a planet, $r$ is a radius of orbit of a planet, $G$ is the gravitational constant, and $m_{S}$ is the mass of the Sun.
$$
begin{aligned}
T&=2 pi sqrt{frac{r^{3}}{G m_{S}}} /^{2}\
T^{2}&=4 pi^{2}frac{r^{3}}{G m_{S}}\
m_{S}&=4 pi^{2}frac{r^{3}}{G T^{2}}
end{aligned}
$$
$$
begin{aligned}
m_{S}&=4 pi^{2}frac{r_{E}^{3}}{GT_{E}^{2}}\
m_{S}&=4 pi^{2}frac{left( 1.50 cdot 10^{11} hspace{0.5mm} mathrm{m} right)^{3}}{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} cdot left( 31536000 hspace{0.5mm} mathrm{s} right)^{2}}\
m_{S}&=2.00cdot 10^{30} hspace{0.5mm} mathrm{kg}
end{aligned}
$$
$$
begin{aligned}
F=m g
end{aligned}
$$
$$
begin{aligned}
F=45.0 hspace{0.5mm} mathrm{kg} cdot 7.83 hspace{0.5mm} mathrm{N/kg}
end{aligned}
$$
$$
begin{aligned}
F&=352.35 hspace{0.5mm} mathrm{N}\
F&approx 352 hspace{0.5mm} mathrm{N}
end{aligned}
$$
We can write this law as
$$
begin{aligned}
T_{s}=2 pi sqrt{frac{left(r_{s}+r_{M}right)^{3}}{G m_{M}}}
end{aligned}
$$
where $T_{s}$ is a period of the satellite, $r_{s}$ is a radius of orbit of the satellite, $r_{M}$ is a radius of Mars, $G$ is the gravitational constant, and $m_{M}$ is the mass of the Mars.
To find the speed of the satellite, we are going to use Universal Gravitational Law in combination with the centripetal force
$$
begin{aligned}
frac{m_{s}v_{s}^{2}}{r_{s}+r_{M}}=Gfrac{m_{M} m_{s}}{left(r_{s}+r_{M}right)^{2}}
end{aligned}
$$
where we use the mass of Mars because the satellite is in Mars’s gravitational field.
$$
begin{aligned}
T_{s}&=2 pi sqrt{frac{left(r_{s}+r_{M}right)^{3}}{G m_{M}}}\
T_{s}&=2 pi sqrt{frac{left( 3.58 cdot 10^{6} hspace{0.5mm} mathrm{m} right)^{3}}{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} cdot 6.42 cdot 10^{23} hspace{0.5mm} mathrm{kg}}}\
T_{s}&=6.50cdot 10^{3} hspace{0.5mm} mathrm{s}
end{aligned}
$$
$$
begin{aligned}
frac{m_{s}v_{s}^{2}}{r_{s}+r_{M}}&=Gfrac{m_{M} m_{s}}{left(r_{s}+r_{M}right)^{2}}/: m_{s}/left(r_{s}+r_{M}right)\
v_{s}^{2}&=Gfrac{m_{M} }{r_{s}+r_{M}}
end{aligned}
$$
$$
begin{aligned}
v_{s}^{2}&=Gfrac{m_{M} }{r_{s}+r_{M}}\
v_{s}&=sqrt{Gfrac{m_{M} }{r_{s}+r_{M}}}\
v_{s}&=sqrt{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} frac{6.42 cdot 10^{23} hspace{0.5mm} mathrm{kg} }{3.58 cdot 10^{6} hspace{0.5mm} mathrm{m}}}\
v_{s}&=3.46 cdot 10^{3}hspace{0.5mm} mathrm{frac{m}{s}}
end{aligned}
$$
$v_{s}=3.46 cdot 10^{3}hspace{0.5mm} mathrm{frac{m}{s}}$
$$
begin{aligned}
left( frac{T_{s}}{T_{M}} right)^{2}=left( frac{r_{s}}{r_{M}}right)^{3}
end{aligned}
$$
where $T_{s}$ is a period of the satellite, $T_{M}$ is a period of the Moon, $r_{s}$ is a radius of the satellite’s orbit, and $r_{M}$ is a radius of the Moon’s orbit.
$$
begin{aligned}
r_{s}=0.5r_{M}
end{aligned}
$$
$$
begin{aligned}
left( frac{T_{s}}{T_{M}} right)^{2}&=left( frac{0.5r_{M}}{r_{M}}right)^{3}\
left( frac{T_{s}}{T_{M}} right)^{2}&=left( frac{1}{2}right)^{3}\
left( frac{T_{s}}{T_{m}} right)^{2}&=frac{1}{8}\
end{aligned}
$$
$$
begin{aligned}
left( frac{T_{s}}{T_{m}} right)^{2}&=frac{1}{8}\
sqrt{left( frac{T_{s}}{T_{m}} right)^{2}}&= sqrt{frac{1}{8}}\
frac{T_{s}}{T_{m}}&=0.35\
T_{s}&=0.35T_{M}
end{aligned}
$$
We can write this law as
$$
begin{aligned}
T_{c}=2 pi sqrt{frac{r_{M}^{3}}{G m_{M}}}
end{aligned}
$$
where $T_{c}$ is a period of the cannonball, $r_{M}$ is a radius of the Moon’s orbit, $G$ is the gravitational constant, and $m_{M}$ is the mass of the Moon.
To find the speed of the cannonball, we are going to use Universal Gravitational Law in combination with the centripetal force
$$
begin{aligned}
frac{m_{c}v_{c}^{2}}{r_{M}}=Gfrac{m_{M} m_{c}}{r_{M}^{2}}
end{aligned}
$$
where we use the mass of the Moon because the satellite is in the Moon’s gravitational field.
$$
begin{aligned}
frac{m_{c}v_{c}^{2}}{r_{M}}&=Gfrac{m_{M} m_{c}}{r_{M}^{2}}/: m_{c}/r_{M}\
v_{c}^{2}&=Gfrac{m_{M} }{r_{M}}
end{aligned}
$$
$$
begin{aligned}
v_{c}^{2}&=Gfrac{m_{M} }{r_{M}}\
v_{c}&=sqrt{Gfrac{m_{M} }{r_{M}}}\
v_{c}&=sqrt{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{m^{3}/kg s^{2}} frac{7.3 cdot 10^{22} hspace{0.5mm} mathrm{kg} }{1.785 cdot 10^{6} hspace{0.5mm} mathrm{m}}}\
v_{c}&=1.65 cdot 10^{3}hspace{0.5mm} mathrm{frac{m}{s}}
end{aligned}
$$
$$
begin{aligned}
T_{c}&=2 pi sqrt{frac{r_{M}^{3}}{G m_{M}}}\
T_{c}&=2 pi sqrt{frac{left( 1.785 cdot 10^{6} hspace{0.5mm} mathrm{m} right)^{3}}{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} cdot 7.3 cdot 10^{22} hspace{0.5mm} mathrm{kg}}}\
T_{c}&=6.79 cdot 10^{3} hspace{0.5mm} mathrm{s}
end{aligned}
$$
$T_{c}=6.79 cdot 10^{3} hspace{0.5mm} mathrm{s}$
$$
begin{aligned}
T_{M}=2 pi sqrt{frac{r_{M}^{3}}{G m_{E}}}
end{aligned}
$$
where $T_{M}$ is a period of the Moon, $r_{M}$ is a radius of the Moon’s orbit, and $m_{E}$ is a mass of Earth.
$$
begin{aligned}
T_{M}’&=2 pi sqrt{frac{r_{M}^{3}}{G m_{E}’}}
end{aligned}
$$
$$
begin{aligned}
frac{T_{M}’}{T_{M}}&=frac{2 pi sqrt{frac{r_{M}^{3}}{G m_{E}’}}}{2 pi sqrt{frac{r_{M}^{3}}{G m_{E}}}}\
frac{T_{M}’}{T_{M}}&=frac{ sqrt{frac{1}{m_{E}’}}}{ sqrt{frac{1}{m_{E}}}}\
frac{T_{M}’}{T_{M}}&=frac{ sqrt{frac{1}{2m_{E}}}}{ sqrt{frac{1}{m_{E}}}}\
frac{T_{M}’}{T_{M}}&=sqrt{frac{1}{2}}\
T_{M}’&=0.707T_{M}\
T_{M}’&=0.707 hspace{0.5mm} mathrm{months}\
end{aligned}
$$
$$
begin{aligned}
left( frac{T_{s}}{T_{M}’} right)^{2}=left( frac{r_{s}}{r_{M}}right)^{3}
end{aligned}
$$
where $T_{s}$ is a period of the satellite, $T_{M}’$ is a period of the Moon, $r_{s}$ is a radius of the satellite’s orbit, and $r_{M}$ is a radius of the Moon’s orbit.
$$
begin{aligned}
left( frac{T_{s}}{T_{M}’} right)^{2}&=left( frac{r_{s}}{r_{M}}right)^{3}\
frac{r_{s}}{r_{M}}&=left( frac{T_{s}}{T_{M}’} right)^{2/3}\
r_{s}&=r_{M}left( frac{T_{s}}{T_{M}’} right)^{2/3}\
end{aligned}
$$
$$
begin{aligned}
r_{s}&=r_{M}left( frac{T_{s}}{T_{M}’} right)^{2/3}\
r_{s}&=r_{M}left( frac{1hspace{0.5mm} mathrm{months}}{0.707 hspace{0.5mm} mathrm{months}} right)^{2/3}\
r_{s}&=1.26 r_{M}
end{aligned}
$$
$$
begin{aligned}
T_{E}&=2 pi sqrt{frac{r_{E}^{3}}{G m_{S}}}
end{aligned}
$$
where $m_{S}$ is the mass of the Sun. We can see there is no mass of Earth in this equation, so the period of Earth will remain the same.
$$
begin{aligned}
frac{mv_{p}^{2}}{r_{p}}=Gfrac{m_{p} m}{r_{p}^{2}}
end{aligned}
$$
where $m$ is a mass of an object, $m_{p}$ is a mass of a planet, $v_{p}$ is a speed of a planet, and $r_{p}$ is a radius of a planet.
$$
begin{aligned}
frac{mv_{p}^{2}}{r_{p}}&=Gfrac{m_{p} m}{r_{p}^{2}}/: m/r_{p}\
v_{p}^{2}&=Gfrac{m_{p} }{r_{p}}\
v_{p}&=sqrt{Gfrac{m_{p} }{r_{p}}}\
end{aligned}
$$
$$
begin{aligned}
2 pi r_{p}&=T_{p}v_{p}\
T_{p}&=frac{2 pi r_{p}}{v_{p}}\
T_{p}&=frac{2 pi r_{p}}{sqrt{Gfrac{m_{p} }{r_{p}}}}\
T_{p}&=2 pi sqrt {frac{ r_{p}^{3}}{G m_{p}}}\
end{aligned}
$$
$$
begin{aligned}
T_{p}&=2 pi sqrt{frac{ left( 6.38 cdot 10^{6} hspace{0.5mm} mathrm{m} right)^{3}}{6.67 cdot 10^{-11} hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} cdot 5.98 cdot 10^{24} hspace{0.5mm} mathrm{kg}}}\
T_{p}&=50.66 cdot 10^{2} hspace{0.5mm} mathrm{s}\
T_{p}&=84.43 hspace{0.5mm} mathrm{min}
end{aligned}
$$
$$
begin{aligned}
F_{fr}&leq mu m g_{M}\
F_{c}&=frac{mv^{2}}{r^{2}}
end{aligned}
$$
where $m$ is the mass of the car, $g_{M}$ is the gravitational acceleration on Mars, $r$ is a radius of a track, and $v$ is a speed of a car.
$$
begin{aligned}
frac{mv^{2}}{r}&= mu m g_{M} / :m\
frac{v^{2}}{r}&= mu g_{M}\
r&=frac{v^{2}}{mu g_{M}}
end{aligned}
$$
$$
begin{aligned}
mg_{M}&=G frac{m hspace{0.5mm} m_{M}}{r_{M}^{2}}/:m\
g_{M}&=G frac{ m_{M}}{r_{M}^{2}}
end{aligned}
$$
where $m_{M}$ is the mass of Mars, and $r_{M}$ is the radius of Mars. We can find these infromation in Table 7-1. Mass of Mars is $m_{M}=6.37 cdot 10^{23}hspace{0.5mm} mathrm{kg}$, the radius of Mars is $r_{M}=3.43cdot 10^{6}hspace{0.5mm} mathrm{m}$ , and the gravitational constant is $G=6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}$.
$$
begin{aligned}
g_{M}&=G frac{ m_{M}}{r_{M}^{2}}\
g_{M}&=6.67 cdot 10^{-11}hspace{0.5mm} mathrm{m^{3}/kg s^{2}}frac{ 6.37 cdot 10^{23}hspace{0.5mm} mathrm{kg}}{left( 3.43cdot 10^{6}hspace{0.5mm} mathrm{m} right)^{2}}\
g_{M}&=3.61hspace{0.5mm} mathrm{frac{m}{s^{2}}}
end{aligned}
$$
$$
begin{aligned}
r&=frac{v^{2}}{mu g_{M}}\
r&=frac{left(12 hspace{0.5mm} mathrm{m/s}right)^{2}}{0.50 cdot 3.61hspace{0.5mm} mathrm{frac{m}{s^{2}}}}\
r&=79.78 hspace{0.5mm} mathrm{m}
end{aligned}
$$
$$
begin{aligned}
T_{A}=2 pi sqrt{frac{r_{A}^{3}}{G m_{M}}}
end{aligned}
$$
where $T_{A}$ is a period of Apollo II, $r_{A}$ is a radius of Apollo’s orbit, $m_{M}$ is a mass of the Moon, and the gravitational constant is $G=6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}$.
$$
begin{aligned}
T_{A}&=2 pi sqrt{frac{r_{A}^{3}}{G m_{M}}}\
T_{A}&=2 pi sqrt{frac{left( 1.896 cdot 10^{6} hspace{0.5mm} mathrm{m} right)^{3}}{6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}} cdot 7.3 cdot 10^{22} hspace{0.5mm} mathrm{kg}}}\
T_{A}&= 7.43cdot 10^{3} hspace{0.5mm} mathrm{s}\
T_{A}&=123 hspace{0.5mm} mathrm{min}
end{aligned}
$$
$$
begin{aligned}
v_{A}&=frac{2 pi r_{A}}{T_{A}}
end{aligned}
$$
$$
begin{aligned}
v_{A}&=frac{2 pi r_{A}}{T_{A}}\
v_{A}&=frac{2 pi cdot 1.896 cdot 10^{6} hspace{0.5mm} mathrm{m}}{7.43cdot 10^{3} hspace{0.5mm} mathrm{s}}\
v_{A}&=1.60 cdot 10^{3} hspace{0.5mm} mathrm{m/s}
end{aligned}
$$
$b)$ $v_{A}=1.60 cdot 10^{3} hspace{0.5mm} mathrm{m/s}$
$$
begin{aligned}
F=Gfrac{m’m}{r^{2}}
end{aligned}
$$
$$
begin{aligned}
F_{Sun}&=Gfrac{m_{S}m}{r_{S}^{2}}\
F_{Sun}&=m cdot6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{1.99 cdot 10^{30}hspace{0.5mm} mathrm{kg}}{(1.50 cdot 10^{11} hspace{0.5mm} mathrm{m})^{2}}\
F_{Sun}&=m cdot 5.90 cdot 10^{-3}hspace{0.5mm} mathrm{N} end{aligned}
$$
In the previous result, we have the term $m$, which is the water mass, and not the unit of meters.
$$
begin{aligned}
F_{Moon}&=Gfrac{m_{M}m}{r_{M}^{2}}\
F_{Moon}&=m cdot 6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{7.36 cdot 10^{22}hspace{0.5mm} mathrm{kg}}{(3.80 cdot 10^{8} hspace{0.5mm} mathrm{m})^{2}}\
F_{Moon}&=m cdot 0.034 cdot 10^{-3}hspace{0.5mm} mathrm{N}
end{aligned}
$$
Same as before, the term $m$ is the water mass and not the unit of meters.
$$
begin{aligned}
F&=Gfrac{m_{M}m}{(r_{M}-r_{E})^{2}}-Gfrac{m_{M}m}{(r_{M}+r_{E})^{2}}\
F&=m cdot 6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{7.36 cdot 10^{22}hspace{0.5mm} mathrm{kg}}{(3.80 cdot 10^{8} hspace{0.5mm} mathrm{m}-0.064 cdot 10^{8} hspace{0.5mm} mathrm{m})^{2}}-\
&hspace{2.5mm}-m cdot 6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{7.36 cdot 10^{22}hspace{0.5mm} mathrm{kg}}{(3.80 cdot 10^{8} hspace{0.5mm} mathrm{m}+0.064 cdot 10^{8} hspace{0.5mm} mathrm{m})^{2}}\
F&=m cdot 2.28 cdot 10^{-6}hspace{0.5mm} mathrm{N}
end{aligned}
$$
$$
begin{aligned}
F&=Gfrac{m_{S}m}{(r_{S}-r_{E})^{2}}-Gfrac{m_{S}m}{(r_{S}+r_{E})^{2}}\
F&=m cdot 6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{1.99 cdot 10^{30}hspace{0.5mm} mathrm{kg}}{(1.50 cdot 10^{11} hspace{0.5mm} mathrm{m}-6.37 cdot 10^{6} hspace{0.5mm} mathrm{m})^{2}}-\
&hspace{2.5mm}-m cdot6.67 cdot 10^{-11}hspace{0.5mm} mathrm{frac{m^{3}}{kg s^{2}}}frac{1.99 cdot 10^{30}hspace{0.5mm} mathrm{kg}}{(1.50 cdot 10^{11} hspace{0.5mm} mathrm{m}+6.37 cdot 10^{6} hspace{0.5mm} mathrm{m})^{2}}\
F&=m cdot 1.00cdot 10^{-6}hspace{0.5mm} mathrm{N}
end{aligned}
$$
$$
begin{aligned}
mg&=Gfrac{mcdot m_{E}}{r^{2}}\
g&=Gfrac{m_{E}}{r^{2}}
end{aligned}
$$
where $m_{E}$ is the mass of Earth.
So the factor, $Gm_{E}$ is our constant $c=4.0 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s^{2}m^{2}}}$.
$$
begin{aligned}
Delta d=v Delta t
end{aligned}
$$
where $Delta d$ is the distance between the cities, $v$ is an average speed, and $Delta t$ is the time.
$$
begin{aligned}
Delta d&=v Delta t\
Delta d&=122.5hspace{0.5mm} mathrm{m/s} cdot 3300 hspace{0.5mm} mathrm{s}\
Delta d&=404250 hspace{0.5mm} mathrm{m}\
Delta d&=404.25 hspace{0.5mm} mathrm{km}\
end{aligned}
$$
$$
begin{aligned}
ma&= sum F\
ma&=F_{r}-F_{g}
end{aligned}
$$
where $m$ is Jared’s mass, and $a$ is an acceleration of the system.
$$
begin{aligned}
ma&=F_{r}-F_{g}\
frac{F_{g}}{g}a&=F_{r}-F_{g}\
frac{F_{g}}{g}a+F_{g}&=F_{r}\
F_{g}left(1+frac{a}{g} right)&=F_{r}\
F_{g}&=F_{r} frac{1}{1+frac{a}{g}}
end{aligned}
$$
$$
begin{aligned}
F_{g}&=F_{r} frac{1}{1+frac{a}{g}}\
F_{g}&=716 hspace{0.5mm} mathrm{N} frac{1}{1+frac{1.75 hspace{0.5mm} mathrm{m/ s^{2}}}{9.81 hspace{0.5mm} mathrm{m/ s^{2}}}}\
F_{g}&=607.6 hspace{0.5mm} mathrm{N}
end{aligned}
$$
$$
begin{aligned}
F_{cp}&=frac{m v^{2}}{r}\
F_{cp}&=frac{10^{-3} hspace{0.5mm} mathrm{kg} cdot left( 0.63 cdot 10^{-2} hspace{0.5mm} mathrm{m/s}right)^{2}}{8.6 cdot 10^{-2} hspace{0.5mm} mathrm{m}}\
F_{cp}&=4.6 cdot 10^{-7} hspace{0.5mm} mathrm{N}
end{aligned}
$$