Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Table of contents
Textbook solutions

All Solutions

Page 181: Practice Problems

Exercise 12
Step 1
1 of 2
The speed of the satelit that orbits arounnd the Earth is defined by the equation:

$$
begin{align*}
v&=sqrt{frac{m_ecdot{G}}{r}}
end{align*}
$$

Where the $m_e$ stands for the center of the Earth as the satellite orbits around the Earth, $G$ is universal gas constant $G=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}$. And $r$ is distance between the center of the Earth and the center of satelite.

If the satellite height increase for $24text{ km}$, the new distance $r$ will be:

$$
begin{align*}
r&=r_e+h\
r&=6.38cdot{10^6}text{ m}+225cdot{10^3}text{ m}+24cdot{10^3}text{ m}\
r&=6629cdot{10^3}text{ m}
end{align*}
$$

Let’s substitute and compute the velocity:

$$
begin{align*}
v&=sqrt{frac{m_ecdot{G}}{r}}\
v&=sqrt{frac{5.97cdot{10^{24}text{ kg}}cdot{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}}{6629cdot{10^3}text{ m}}}\
v&=7750 frac{text{m}}{text{s}}
end{align*}
$$

$$
boxed{text{The satellite is slower.}}
$$

Result
2 of 2
The satellite is slower.
Exercise 13
Step 1
1 of 2
$bold{a)}$
The speed of the satelit that orbits arounnd the Earth is defined by the equation:

$$
begin{align*}
v&=sqrt{frac{m_ecdot{G}}{r}}
end{align*}
$$

Where the $m_e$ stands for the center of the Earth as the satellite orbits around the Earth, $G$ is universal gas constant $G=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}$. And $r$ is distance between the center of the Earth and the center of satelite.

If the satellite height is $150text{ km}$, the distance between the Earth and satellite center is

$$
begin{align*}
r&=r_e+h\
r&=6.38cdot{10^6}text{ m}+150cdot{10^3}text{ m}\
r&=6530cdot{10^3}text{ m}
end{align*}
$$

Let’s substitute and compute the velocity:

$$
begin{align*}
v&=sqrt{frac{m_ecdot{G}}{r}}\
v&=sqrt{frac{5.97cdot{10^{24}text{ kg}}cdot{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}}{6530cdot{10^3}text{ m}}}
end{align*}
$$

$$
boxed{v=7800 frac{text{m}}{text{s}}}
$$

$bold{b)}$

The period needed to pass one orbit is given by the equation:

$$
begin{align*}
T&=2cdotpisqrt{frac{r^3}{m_ecdot{G}}}
end{align*}
$$

We have all data, so let’s substitute and compute:

$$
begin{align*}
T&=2cdotpisqrt{frac{(6530cdot{10^3}text{ m})^3}{5.97cdot{10^{24}text{ kg}}cdot{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}}}\
T&=2cdotpicdot{836.2text{ s}}\
T&=5254text{ s}
end{align*}
$$

$$
boxed{T=87text{ min}text{ }34text{ s}}
$$

Result
2 of 2
a) $v=7800 frac{text{m}}{text{s}}$

b) $T=87text{ min}text{ }34text{ s}$

Exercise 14
Step 1
1 of 3
$bold{a)}$
The speed of the satellite that orbits around the Mercury is defined by the equation:

$$
begin{align*}
v&=sqrt{frac{m_mcdot{G}}{r}}
end{align*}
$$

Where the $m_m$ stands for the mass of the Mercury as the satellite orbits around the Mercury, $G$ is universal gas constant $G=6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}$. And $r$ is distance between the center of the Mercury and the center of satelite.

Let’s find the data for Mercury from the table $17-1$:

$$
begin{align*}
r_m&=2.44cdot{10^6}text{ m}\
m_m&=3.3cdot{10^{23}}text{ kg}
end{align*}
$$

If the satellite height is $260text{ km}$, the distance between the Mercury and satellite center is

$$
begin{align*}
r&=r_m+h\
r&=2.44cdot{10^6}text{ m}+260cdot{10^3}text{ m}\
r&=2700cdot{10^3}text{ m}
end{align*}
$$

Let’s substitute and compute the velocity:

$$
begin{align*}
v&=sqrt{frac{m_mcdot{G}}{r}}\
v&=sqrt{frac{3.3cdot{10^{23}}text{ kg}cdot{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}}{2700cdot{10^3}text{ m}}}
end{align*}
$$

$$
boxed{v=2855 frac{text{m}}{text{s}}}
$$

Step 2
2 of 3
$bold{b)}$

The period needed to pass one orbit is given by the equation:

$$
begin{align*}
T&=2cdotpisqrt{frac{r^3}{m_mcdot{G}}}
end{align*}
$$

We have all data, so let’s substitute and compute:

$$
begin{align*}
T&=2cdotpisqrt{frac{(2700cdot{10^3}text{ m})^3}{3.3cdot{10^{23}text{ kg}}cdot{6.67cdot{10^{-11}} frac{text{N}cdottext{m}^2}{text{kg}^2}}}}\
T&=2cdotpicdot{945text{ s}}\
T&=5937text{ s}
end{align*}
$$

$$
boxed{Tapprox{99text{ min}}}
$$

Result
3 of 3
a) $v=2855 frac{text{m}}{text{s}}$

b) $Tapprox{99text{ min}}$

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Chapter 9: Momentum and Its Conservation
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice