Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Table of contents
Textbook solutions

All Solutions

Page 174: Practice Problems

Exercise 1
Solution 1
Solution 2
Step 1
1 of 3
$$
{color{#c34632}bf{}This is solution is for you If the period is color{#4257b2}7.15 days }
$$

$$
text{color{#4257b2}According to Kepler’s 3rd law $$left(dfrac{T_G}{T_I}right)^2=left(dfrac{r_G}{r_I}right)^3$$}
$$

We need to solve for $r_G$

Raise the power on both sides to $1/3$

$$
left(dfrac{T_G}{T_I}right)^{2/3}=left(dfrac{r_G}{r_I}right)
$$

$$
r_G = r_Ileft(dfrac{T_G}{T_I}right)^{2/3}
$$

From example 1 we can use: $r_1 = 4.2, T_I=1.8$, it is given that $T_G = 7.15$

$$
r_G = 4.2cdot left(dfrac{7.15}{1.8}right)^{2/3}approx 10.5
$$

Step 2
2 of 3
$$
{color{#c34632}bf{}This is solution is for you If the period is color{#4257b2}32 days }
$$

$$
text{color{#4257b2}According to Kepler’s 3rd law $$left(dfrac{T_G}{T_I}right)^2=left(dfrac{r_G}{r_I}right)^3$$}
$$

We need to solve for $r_G$

Raise the power on both sides to $1/3$

$$
left(dfrac{T_G}{T_I}right)^{2/3}=left(dfrac{r_G}{r_I}right)
$$

$$
r_G = r_Ileft(dfrac{T_G}{T_I}right)^{2/3}
$$

From example 1 we can use: $r_1 = 4.2, T_I=1.8$, it is given that $T_G = 32$

$$
r_G = 4.2cdot left(dfrac{32}{1.8}right)^{2/3}approx 28.6
$$

Result
3 of 3
$$
text{color{#4257b2}bf{}SEE SOLUTION}
$$
Step 1
1 of 6
First case for period of $7.15 , text{days}$.

**Given values.**

$T_c=7.15 , text{days}$
$T_l=1.8 , text{days}$
$r_l=4.2 , text{units}$
***

Step 2
2 of 6
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**
–

$$bigg(dfrac{T_c}{T_l} bigg)^2=bigg(dfrac{r_c}{r_l} bigg)^3. tag1$$
When we rearrange equation (1), we get.
$$r_c^3=r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2 tag2$$
By further rearranging, we get.
$$r_c=sqrt[3]{r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2} tag3$$

Step 3
3 of 6
**Calculation method.**
***
$$begin{aligned}
r_c&=sqrt[3]{(4.2 , text{units})^3 bigg(dfrac{7.15 , text{days}}{1.8 , text{days}} bigg)^2}\
r_c&=sqrt[3]{(74.088 , text{units}^3)(15.78)}\
r_c&=sqrt[3]{1169.01 , text{units}^3}\
r_c &=color{#4257b2}{10.53 , text{units}}
end{aligned}$$
Step 4
4 of 6
Second case for period of $32 , text{days}$.

**Given values.**

$T_c=32 , text{days}$
$T_l=1.8 , text{days}$
$r_l=4.2 , text{units}$
***

Step 5
5 of 6
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**
–

$$bigg(dfrac{T_c}{T_l} bigg)^2=bigg(dfrac{r_c}{r_l} bigg)^3. tag1$$
When we rearrange equation (1), we get.
$$r_c^3=r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2 tag2$$
By further rearranging, we get.
$$r_c=sqrt[3]{r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2} tag3$$

Step 6
6 of 6
**Calculation method.**
***
$$begin{aligned}
r_c&=sqrt[3]{(4.2 , text{units})^3 bigg(dfrac{32 , text{days}}{1.8 , text{days}} bigg)^2}\
r_c&=sqrt[3]{(74.088 , text{units}^3)(316.04)}\
r_c&=sqrt[3]{23415.5 , text{units}^3}\
r_c &=color{#c34632}{28.6 , text{units}}
end{aligned}$$
Exercise 2
Step 1
1 of 6
In this problem, we need to find the period of the asteroid in Earth years. To do this, we are going to use Kepler’s third law, and we can write it as
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}=left( frac{r_{a}}{r_{E}}right)^{3}
end{aligned}
$$
where $T_{a}$ is a period of an asteriod, $T_{E}$ is a period of Earth, $r_{a}$ is a radius of an asteroid, and $r_{E}$ is a radius of Earth.
Step 2
2 of 6
We know that a mean orbital radius of an asteroid is twice Earth’s radius, so we can write
$$
begin{aligned}
r_{a}=2r_{E}
end{aligned}
$$
Step 3
3 of 6
If we combine these relations, we get
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}&=left( frac{2r_{E}}{r_{E}}right)^{3}\
left( frac{T_{a}}{T_{E}} right)^{2}&= 2^{3}\
left( frac{T_{a}}{T_{E}} right)^{2}&= 8\
end{aligned}
$$
Step 4
4 of 6
Now, we want to find the relation between Earth’s and asteroid’s periods. First, we are going to find the square root of the expression
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}&= 8 \
sqrt{left( frac{T_{a}}{T_{E}} right)^{2}}&= sqrt{8}\
frac{T_{a}}{T_{E}} &=2.83
end{aligned}
$$
Step 5
5 of 6
We can multiple everything with $T_{E}$ and find the period of an asteroid. The period of Earth is $1 hspace{0.5mm} mathrm{yr}$, and we want to find the period of an asteroid in Earth’s years.
$$
begin{aligned}
frac{T_{a}}{T_{E}} &=2.83 / cdot T_{E}\
T_{a}&=2.83T_{E}\
T_{a}&=2.83cdot 1 hspace{0.5mm} mathrm{yr}\
T_{a}&=2.83 hspace{0.5mm} mathrm{yr}\
end{aligned}
$$
Result
6 of 6
$T_{a}=2.83 hspace{0.5mm} mathrm{yr}$
Exercise 3
Solution 1
Solution 2
Step 1
1 of 2
To compute the time needed to orbit around the sun is defined by Kepler’s Third Law:

$$
begin{align*}
left(frac{T_E}{T_M}right)^2&=left(frac{r_E}{r_M}right)^3
end{align*}
$$

where the $r_M$ stands for the radius of the Mars orbit, $r_E$ represents the radius of the Earth radius, also $T_E$ and $T_M$ stands for the time needed for the Earth and Mars to orbit over the earth.

We know that the time needed for Earth to orbit over the Sun is $T_E=365text{ days}$. We have given the relation of radius of orbite $r_M=1.52cdot{r_E}$.

$$
begin{align*}
left(frac{T_E}{T_M}right)^2&=left(frac{r_E}{r_M}right)^3\
T_M&=sqrtfrac{(T_E)^2}{left(frac{r_E}{r_M}right)^3}\
T_M&=sqrtfrac{(365text{ days})^2}{left(frac{r_E}{1.52cdot{r_E}}right)^3}\
T_M&=sqrtfrac{(365text{ days})^2}{left(frac{1}{1.52}right)^3}
end{align*}
$$

$$
boxed{T_M=684text{ days}}
$$

Result
2 of 2
$$
T_M=684text{ days}
$$
Step 1
1 of 5
**Given values.**

$T_e=365 , text{days}$
$R_M=1.52 cdot R_E$
***

Step 2
2 of 5
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**
–

$$bigg(dfrac{T_e}{T_M} bigg)^2=bigg(dfrac{R_e}{R_M} bigg)^3, tag1$$
The squared quantity of the period of the earth divided by the period of the Moon is equal to the cubed quantity of the earth’s average distance from the Sun, divided by the Moon’s average distance from the Sun.

Step 3
3 of 5
From the equation (1), we have.
$$T_M^2=T_e^2 cdot bigg(dfrac{R_M}{R_E} bigg)^3 tag2$$
Since the $R_M=1.52 cdot R_E$, equation (2) becomes.
$$T_M^2=T_e^2 cdot bigg(dfrac{1.52 cdot R_E}{R_E} bigg)^3 tag3$$
By further rearranging we get.
$$ T_M=sqrt{T_e^2 cdot bigg(1.52 bigg)^3} tag4$$
Plug in values into equation (4) and calculate.
Step 4
4 of 5
**Calculation method.**
***
$$begin{aligned}
T_{M} &=sqrt{(365 , text{days})^2 cdot (1.52)^3 }\
T_{M} &=sqrt{467860.6 , text{days}^2 }\
T_{M} &=color{#c34632}{684 , text{days} }
end{aligned}$$
Result
5 of 5
$$684 , text{days}$$
Exercise 4
Solution 1
Solution 2
Step 1
1 of 6
**Given values.**

$T_M=27.3 , text{days}$
$R_E=6.38 cdot 10^{3} , text{km}$
$R_M=3.9 cdot 10^{5} , text{km}$
***

Step 2
2 of 6
**a)** Our task is to determine the period of a satellite, under given conditions.

**Kepler’s third law.**
–

$$bigg(dfrac{T_s}{T_M} bigg)^2=bigg(dfrac{r_s}{R_M} bigg)^3, tag1$$
The squared quantity of the period of the satellite divided by the period of the Moon is equal to the cubed quantity of the satellite’s average distance from the Sun, divided by the Moon’s average distance from the Sun.

Step 3
3 of 6
From the equation (1), we get.
$$T_s^2=T_M^2 bigg(dfrac{r_s}{R_M} bigg)^3 tag2$$
Plug in values into equation (2) and calculate.

**Calculation method.**

$$begin{aligned}
T_{s} &=sqrt{(27.3 , text{days})^2 bigg(dfrac{6.7 cdot 10^{3} , text{km}}{3.9 cdot 10^{5} , text{km}} bigg)^3}\
T_{s} &=sqrt{(745.29 , text{days}^2)(5.07 cdot 10^{-6})}\
T_{s} &=sqrt{0.00377 , text{days}^2}\
T_{s} &=color{#c34632}{0.06147 , text{day}}
end{aligned}$$

Step 4
4 of 6
**b)** The height of the satellite is actually given as a difference between the radius of the satellite and the radius of the earth.
$$h=r_s-r_E tag3$$
Plug in values into equation (3) and calculate.
***
Step 5
5 of 6
**Calculation method.**

$$begin{aligned}
h &=(6.7 cdot 10^{3} , text{km})-(6.38 cdot 10^{3} , text{km})\
h &=color{#c34632}{320 , text{km}}
end{aligned}$$

Result
6 of 6
a) $0.06147 , text{day}$
b) $320 , text{km}$
Step 1
1 of 2
a)

Solve Kepler’s third law for the period of the satelite, $T_s$:

$T_s^2 = T_M^2 (dfrac{r_s}{r_M})^3$

$T_s^2 = (27.3)^2 (dfrac{6.70e3}{3.90e5})^3$

$T_s^2 = 0.0037788$

Thus:

$T_s = 0.0615 day$

b)

The radius of Earth is $6.37times 10^3$ km, thus the height of the satellite is:

$$
h = (6.70times 10^3) – (6.37times 10^3) = 3.3 times 10^2 km
$$

Result
2 of 2
a) $0.0615 day$

b) $3.3 times 10^2 km$

Exercise 5
Solution 1
Solution 2
Step 1
1 of 2
To compute the radius of orbit for the satelite we have to implement Kepler’s Third law that is given by relation:

$$
begin{align}
left(frac{T_M}{T_S}right)^2&=left(frac{r_M}{r_S}right)^3
end{align}
$$

Here the satellite and the moon orbits around the Earth. $T_M$ and $T_S$ stand for the time needed for the moon and satellite to make one complete rotation around the Earth. The $r_M$ and $r_S$ represent the radius of orbit for the Moon and satellite around the earth. We have given:

$$
begin{align*}
T_M&=27.3text{ days}\
T_S&=1text{ day}\
r_M&=3.9cdot{10^5}text{ km}
end{align*}
$$

Let’s express $r_S$ from the first equation and substitute:

$$
begin{align*}
r^3_S&=frac{r^3_M}{left(frac{T_M}{T_S}right)^2}\
r^3_S&=frac{T^2_Scdot{r^3_M}}{T^2_M}\
r_S&=sqrt[3]{frac{T^2_Scdot{r^3_M}}{T^2_M}}\
r_S&=sqrt[3]{frac{(1text{ day})^2cdot{(3.9cdot{10^5}text{ km})^3}}{(27.3text{ days})^2}}
end{align*}
$$

$$
boxed{r_S=43000text{ km}}
$$

Result
2 of 2
$$
r_S=43000text{ km}
$$
Step 1
1 of 5
**Given values.**

$T_M=27.3 , text{days}$
$T_s=1 , text{day}$
$R_M=3.9 cdot 10^{5} , text{km}$
***

Step 2
2 of 5
Our task is to determine the radius of orbit for the satellite. To do that, we have to implement Kepler’s Third law.

**Kepler’s third law.**
–

$$bigg(dfrac{T_M}{T_s} bigg)^2=bigg(dfrac{R_m}{R_s} bigg)^3, tag1$$
The squared quantity of the period of the moon divided by the period of the satellite is equal to the cubed quantity of the Moon’s average distance from the Sun, divided by the satellite’s average distance from the Sun.

Step 3
3 of 5
From the equation (1), we get.
$$R_s^3=dfrac{R_M^3}{bigg(dfrac{T_M}{T_S} bigg)^2}tag2$$
By further derivation, we get.
$$R_s^{3}=dfrac{T_{s}^2 cdot R_{M}^3}{T_{M}^2} tag3$$
Final relation will be.
$$R_s =sqrt[3]{dfrac{T_{s}^2 cdot R_{M}^3}{T_{M}^2}} tag4$$
Step 4
4 of 5
Plug in values into equation (4) and calculate.
***
**Calculation method.**
$$begin{aligned}
R_s &=sqrt[3]{dfrac{ (1 , text{day})^2 cdot (3.9 cdot 10^{5} , text{km})^3}{(27.3 , text{days})^2}}\
R_s &=sqrt[3]{dfrac{(5.93 cdot 10^{16} , text{km}^3 cdot cancel{text{day}^2})}{745.29 , cancel{text{days}^2}}}\
R_s &=sqrt[3]{7.95 cdot 10^{13} , text{km}^3}\
R_{s} &=color{#c34632}{43 010 , text{km}}
end{aligned}$$
Result
5 of 5
$$43 010 , text{km}$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Chapter 9: Momentum and Its Conservation
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice