Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 174: Practice Problems

Exercise 1
Solution 1
Solution 2
Step 1
1 of 3
$$
{color{#c34632}bf{}This is solution is for you If the period is color{#4257b2}7.15 days }
$$

$$
text{color{#4257b2}According to Kepler’s 3rd law $$left(dfrac{T_G}{T_I}right)^2=left(dfrac{r_G}{r_I}right)^3$$}
$$

We need to solve for $r_G$

Raise the power on both sides to $1/3$

$$
left(dfrac{T_G}{T_I}right)^{2/3}=left(dfrac{r_G}{r_I}right)
$$

$$
r_G = r_Ileft(dfrac{T_G}{T_I}right)^{2/3}
$$

From example 1 we can use: $r_1 = 4.2, T_I=1.8$, it is given that $T_G = 7.15$

$$
r_G = 4.2cdot left(dfrac{7.15}{1.8}right)^{2/3}approx 10.5
$$

Step 2
2 of 3
$$
{color{#c34632}bf{}This is solution is for you If the period is color{#4257b2}32 days }
$$

$$
text{color{#4257b2}According to Kepler’s 3rd law $$left(dfrac{T_G}{T_I}right)^2=left(dfrac{r_G}{r_I}right)^3$$}
$$

We need to solve for $r_G$

Raise the power on both sides to $1/3$

$$
left(dfrac{T_G}{T_I}right)^{2/3}=left(dfrac{r_G}{r_I}right)
$$

$$
r_G = r_Ileft(dfrac{T_G}{T_I}right)^{2/3}
$$

From example 1 we can use: $r_1 = 4.2, T_I=1.8$, it is given that $T_G = 32$

$$
r_G = 4.2cdot left(dfrac{32}{1.8}right)^{2/3}approx 28.6
$$

Result
3 of 3
$$
text{color{#4257b2}bf{}SEE SOLUTION}
$$
Step 1
1 of 6
First case for period of $7.15 , text{days}$.

**Given values.**

$T_c=7.15 , text{days}$
$T_l=1.8 , text{days}$
$r_l=4.2 , text{units}$
***

Step 2
2 of 6
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**

$$bigg(dfrac{T_c}{T_l} bigg)^2=bigg(dfrac{r_c}{r_l} bigg)^3. tag1$$
When we rearrange equation (1), we get.
$$r_c^3=r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2 tag2$$
By further rearranging, we get.
$$r_c=sqrt[3]{r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2} tag3$$

Step 3
3 of 6
**Calculation method.**
***
$$begin{aligned}
r_c&=sqrt[3]{(4.2 , text{units})^3 bigg(dfrac{7.15 , text{days}}{1.8 , text{days}} bigg)^2}\
r_c&=sqrt[3]{(74.088 , text{units}^3)(15.78)}\
r_c&=sqrt[3]{1169.01 , text{units}^3}\
r_c &=color{#4257b2}{10.53 , text{units}}
end{aligned}$$
Step 4
4 of 6
Second case for period of $32 , text{days}$.

**Given values.**

$T_c=32 , text{days}$
$T_l=1.8 , text{days}$
$r_l=4.2 , text{units}$
***

Step 5
5 of 6
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**

$$bigg(dfrac{T_c}{T_l} bigg)^2=bigg(dfrac{r_c}{r_l} bigg)^3. tag1$$
When we rearrange equation (1), we get.
$$r_c^3=r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2 tag2$$
By further rearranging, we get.
$$r_c=sqrt[3]{r_{l}^3 cdot bigg(dfrac{T_c}{T_l} bigg)^2} tag3$$

Step 6
6 of 6
**Calculation method.**
***
$$begin{aligned}
r_c&=sqrt[3]{(4.2 , text{units})^3 bigg(dfrac{32 , text{days}}{1.8 , text{days}} bigg)^2}\
r_c&=sqrt[3]{(74.088 , text{units}^3)(316.04)}\
r_c&=sqrt[3]{23415.5 , text{units}^3}\
r_c &=color{#c34632}{28.6 , text{units}}
end{aligned}$$
Exercise 2
Step 1
1 of 6
In this problem, we need to find the period of the asteroid in Earth years. To do this, we are going to use Kepler’s third law, and we can write it as
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}=left( frac{r_{a}}{r_{E}}right)^{3}
end{aligned}
$$
where $T_{a}$ is a period of an asteriod, $T_{E}$ is a period of Earth, $r_{a}$ is a radius of an asteroid, and $r_{E}$ is a radius of Earth.
Step 2
2 of 6
We know that a mean orbital radius of an asteroid is twice Earth’s radius, so we can write
$$
begin{aligned}
r_{a}=2r_{E}
end{aligned}
$$
Step 3
3 of 6
If we combine these relations, we get
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}&=left( frac{2r_{E}}{r_{E}}right)^{3}\
left( frac{T_{a}}{T_{E}} right)^{2}&= 2^{3}\
left( frac{T_{a}}{T_{E}} right)^{2}&= 8\
end{aligned}
$$
Step 4
4 of 6
Now, we want to find the relation between Earth’s and asteroid’s periods. First, we are going to find the square root of the expression
$$
begin{aligned}
left( frac{T_{a}}{T_{E}} right)^{2}&= 8 \
sqrt{left( frac{T_{a}}{T_{E}} right)^{2}}&= sqrt{8}\
frac{T_{a}}{T_{E}} &=2.83
end{aligned}
$$
Step 5
5 of 6
We can multiple everything with $T_{E}$ and find the period of an asteroid. The period of Earth is $1 hspace{0.5mm} mathrm{yr}$, and we want to find the period of an asteroid in Earth’s years.
$$
begin{aligned}
frac{T_{a}}{T_{E}} &=2.83 / cdot T_{E}\
T_{a}&=2.83T_{E}\
T_{a}&=2.83cdot 1 hspace{0.5mm} mathrm{yr}\
T_{a}&=2.83 hspace{0.5mm} mathrm{yr}\
end{aligned}
$$
Result
6 of 6
$T_{a}=2.83 hspace{0.5mm} mathrm{yr}$
Exercise 3
Solution 1
Solution 2
Step 1
1 of 2
To compute the time needed to orbit around the sun is defined by Kepler’s Third Law:

$$
begin{align*}
left(frac{T_E}{T_M}right)^2&=left(frac{r_E}{r_M}right)^3
end{align*}
$$

where the $r_M$ stands for the radius of the Mars orbit, $r_E$ represents the radius of the Earth radius, also $T_E$ and $T_M$ stands for the time needed for the Earth and Mars to orbit over the earth.

We know that the time needed for Earth to orbit over the Sun is $T_E=365text{ days}$. We have given the relation of radius of orbite $r_M=1.52cdot{r_E}$.

$$
begin{align*}
left(frac{T_E}{T_M}right)^2&=left(frac{r_E}{r_M}right)^3\
T_M&=sqrtfrac{(T_E)^2}{left(frac{r_E}{r_M}right)^3}\
T_M&=sqrtfrac{(365text{ days})^2}{left(frac{r_E}{1.52cdot{r_E}}right)^3}\
T_M&=sqrtfrac{(365text{ days})^2}{left(frac{1}{1.52}right)^3}
end{align*}
$$

$$
boxed{T_M=684text{ days}}
$$

Result
2 of 2
$$
T_M=684text{ days}
$$
Step 1
1 of 5
**Given values.**

$T_e=365 , text{days}$
$R_M=1.52 cdot R_E$
***

Step 2
2 of 5
To determine required, we use *Kepler’s third law.*

**Kepler’s third law.**

$$bigg(dfrac{T_e}{T_M} bigg)^2=bigg(dfrac{R_e}{R_M} bigg)^3, tag1$$
The squared quantity of the period of the earth divided by the period of the Moon is equal to the cubed quantity of the earth’s average distance from the Sun, divided by the Moon’s average distance from the Sun.

Step 3
3 of 5
From the equation (1), we have.
$$T_M^2=T_e^2 cdot bigg(dfrac{R_M}{R_E} bigg)^3 tag2$$
Since the $R_M=1.52 cdot R_E$, equation (2) becomes.
$$T_M^2=T_e^2 cdot bigg(dfrac{1.52 cdot R_E}{R_E} bigg)^3 tag3$$
By further rearranging we get.
$$ T_M=sqrt{T_e^2 cdot bigg(1.52 bigg)^3} tag4$$
Plug in values into equation (4) and calculate.
Step 4
4 of 5
**Calculation method.**
***
$$begin{aligned}
T_{M} &=sqrt{(365 , text{days})^2 cdot (1.52)^3 }\
T_{M} &=sqrt{467860.6 , text{days}^2 }\
T_{M} &=color{#c34632}{684 , text{days} }
end{aligned}$$
Result
5 of 5
$$684 , text{days}$$
Exercise 4
Solution 1
Solution 2
Step 1
1 of 6
**Given values.**

$T_M=27.3 , text{days}$
$R_E=6.38 cdot 10^{3} , text{km}$
$R_M=3.9 cdot 10^{5} , text{km}$
***

Step 2
2 of 6
**a)** Our task is to determine the period of a satellite, under given conditions.

**Kepler’s third law.**

$$bigg(dfrac{T_s}{T_M} bigg)^2=bigg(dfrac{r_s}{R_M} bigg)^3, tag1$$
The squared quantity of the period of the satellite divided by the period of the Moon is equal to the cubed quantity of the satellite’s average distance from the Sun, divided by the Moon’s average distance from the Sun.

Step 3
3 of 6
From the equation (1), we get.
$$T_s^2=T_M^2 bigg(dfrac{r_s}{R_M} bigg)^3 tag2$$
Plug in values into equation (2) and calculate.

**Calculation method.**

$$begin{aligned}
T_{s} &=sqrt{(27.3 , text{days})^2 bigg(dfrac{6.7 cdot 10^{3} , text{km}}{3.9 cdot 10^{5} , text{km}} bigg)^3}\
T_{s} &=sqrt{(745.29 , text{days}^2)(5.07 cdot 10^{-6})}\
T_{s} &=sqrt{0.00377 , text{days}^2}\
T_{s} &=color{#c34632}{0.06147 , text{day}}
end{aligned}$$

Step 4
4 of 6
**b)** The height of the satellite is actually given as a difference between the radius of the satellite and the radius of the earth.
$$h=r_s-r_E tag3$$
Plug in values into equation (3) and calculate.
***
Step 5
5 of 6
**Calculation method.**

$$begin{aligned}
h &=(6.7 cdot 10^{3} , text{km})-(6.38 cdot 10^{3} , text{km})\
h &=color{#c34632}{320 , text{km}}
end{aligned}$$

Result
6 of 6
a) $0.06147 , text{day}$
b) $320 , text{km}$
Step 1
1 of 2
a)

Solve Kepler’s third law for the period of the satelite, $T_s$:

$T_s^2 = T_M^2 (dfrac{r_s}{r_M})^3$

$T_s^2 = (27.3)^2 (dfrac{6.70e3}{3.90e5})^3$

$T_s^2 = 0.0037788$

Thus:

$T_s = 0.0615 day$

b)

The radius of Earth is $6.37times 10^3$ km, thus the height of the satellite is:

$$
h = (6.70times 10^3) – (6.37times 10^3) = 3.3 times 10^2 km
$$

Result
2 of 2
a) $0.0615 day$

b) $3.3 times 10^2 km$

Exercise 5
Solution 1
Solution 2
Step 1
1 of 2
To compute the radius of orbit for the satelite we have to implement Kepler’s Third law that is given by relation:

$$
begin{align}
left(frac{T_M}{T_S}right)^2&=left(frac{r_M}{r_S}right)^3
end{align}
$$

Here the satellite and the moon orbits around the Earth. $T_M$ and $T_S$ stand for the time needed for the moon and satellite to make one complete rotation around the Earth. The $r_M$ and $r_S$ represent the radius of orbit for the Moon and satellite around the earth. We have given:

$$
begin{align*}
T_M&=27.3text{ days}\
T_S&=1text{ day}\
r_M&=3.9cdot{10^5}text{ km}
end{align*}
$$

Let’s express $r_S$ from the first equation and substitute:

$$
begin{align*}
r^3_S&=frac{r^3_M}{left(frac{T_M}{T_S}right)^2}\
r^3_S&=frac{T^2_Scdot{r^3_M}}{T^2_M}\
r_S&=sqrt[3]{frac{T^2_Scdot{r^3_M}}{T^2_M}}\
r_S&=sqrt[3]{frac{(1text{ day})^2cdot{(3.9cdot{10^5}text{ km})^3}}{(27.3text{ days})^2}}
end{align*}
$$

$$
boxed{r_S=43000text{ km}}
$$

Result
2 of 2
$$
r_S=43000text{ km}
$$
Step 1
1 of 5
**Given values.**

$T_M=27.3 , text{days}$
$T_s=1 , text{day}$
$R_M=3.9 cdot 10^{5} , text{km}$
***

Step 2
2 of 5
Our task is to determine the radius of orbit for the satellite. To do that, we have to implement Kepler’s Third law.

**Kepler’s third law.**

$$bigg(dfrac{T_M}{T_s} bigg)^2=bigg(dfrac{R_m}{R_s} bigg)^3, tag1$$
The squared quantity of the period of the moon divided by the period of the satellite is equal to the cubed quantity of the Moon’s average distance from the Sun, divided by the satellite’s average distance from the Sun.

Step 3
3 of 5
From the equation (1), we get.
$$R_s^3=dfrac{R_M^3}{bigg(dfrac{T_M}{T_S} bigg)^2}tag2$$
By further derivation, we get.
$$R_s^{3}=dfrac{T_{s}^2 cdot R_{M}^3}{T_{M}^2} tag3$$
Final relation will be.
$$R_s =sqrt[3]{dfrac{T_{s}^2 cdot R_{M}^3}{T_{M}^2}} tag4$$
Step 4
4 of 5
Plug in values into equation (4) and calculate.
***
**Calculation method.**
$$begin{aligned}
R_s &=sqrt[3]{dfrac{ (1 , text{day})^2 cdot (3.9 cdot 10^{5} , text{km})^3}{(27.3 , text{days})^2}}\
R_s &=sqrt[3]{dfrac{(5.93 cdot 10^{16} , text{km}^3 cdot cancel{text{day}^2})}{745.29 , cancel{text{days}^2}}}\
R_s &=sqrt[3]{7.95 cdot 10^{13} , text{km}^3}\
R_{s} &=color{#c34632}{43 010 , text{km}}
end{aligned}$$
Result
5 of 5
$$43 010 , text{km}$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New