Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Page 5: Practice Problems
Page 10: Section Review
Page 18: Practice Problems
Page 19: Section Review
Chapter 2: Representing Motion
Section 2.1: Picturing Motion
Section 2.2: Where and When?
Section 2.3: Position-Time Graphs
Section 2.4: How Fast?
Page 52: Assessment
Page 55: Standardized Test Practice
Page 39: Practice Problems
Page 42: Section Review
Page 45: Practice Problems
Page 47: Section Review
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Page 61: Practice Problems
Page 64: Section Review
Page 65: Practice Problems
Page 71: Section Review
Page 74: Practice Problems
Page 75: Section Review
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Page 89: Practice Problems
Page 95: Section Review
Page 97: Practice Problems
Page 101: Section Review
Page 104: Practice Problems
Page 107: Section Review
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Page 121: Practice Problems
Page 125: Section Review
Page 128: Practice Problems
Page 130: Section Review
Page 133: Practice Problems
Page 135: Section Review
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Page 150: Practice Problems
Page 152: Section Review
Page 156: Section Review
Page 156: Practice Problems
Page 159: Practice Problems
Page 159: Section Review
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Page 174: Practice Problems
Page 178: Section Review
Page 181: Practice Problems
Page 185: Section Review
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Page 200: Section Review
Page 200: Practice Problems
Page 203: Practice Problems
Page 210: Section Review
Page 215: Practice Problems
Page 217: Section Review
Chapter 9: Momentum and Its Conservation
Section 9.1: Impulse and Momentum
Section 9.2: Conservation of Momentum
Page 250: Assessment
Page 255: Standardized Test Practice
Page 233: Practice Problems
Page 235: Section Review
Page 238: Practice Problems
Page 245: Section Review
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Page 261: Practice Problems
Page 265: Section Review
Page 272: Practice Problems
Page 273: Section Review
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Page 287: Practice Problems
Page 292: Section Review
Page 297: Practice Problems
Page 301: Section Review
Chapter 12: Thermal Energy
Section 12.1: Temperature and Thermal Energy
Section 12.2: Changes of State and the Laws of Thermodynamics
Page 336: Assessment
Page 339: Standardized Test Practice
Page 317: Practice Problems
Page 322: Section Review
Page 325: Practice Problems
Page 331: Section Review
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Page 344: Practice Problems
Page 348: Section Review
Page 353: Practice Problems
Page 358: Section Review
Page 362: Practice Problems
Page 363: Section Review
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Page 386: Practice Problems
Page 386: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Page 405: Practice Problems
Page 410: Section Review
Page 416: Practice Problems
Page 419: Section Review
Chapter 16: Fundamentals of Light
Section 16.1: Illumination
Section 16.2: The Wave Nature of Light
Page 452: Assessment
Page 455: Standardized Test Practice
Page 436: Practice Problems
Page 438: Section Review
Page 447: Section Review
Page 447: Practice Problems
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Page 460: Practice Problems
Page 463: Section Review
Page 469: Practice Problems
Page 473: Section Review
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Page 487: Practice Problems
Page 492: Section Review
Page 496: Practice Problems
Page 499: Section Review
Chapter 19: Interference and Diffraction
Section 19.1: Interference
Section 19.2: Diffraction
Page 536: Assessment
Page 539: Standardized Test Practice
Page 519: Practice Problems
Page 523: Section Review
Page 526: Practice Problems
Page 531: Section Review
Chapter 20: Static Electricity
Section 20.1: Electric Charge
Section 20.2: Electric Force
Page 558: Assessment
Page 561: Standardized Test Practice
Page 552: Practice Problems
Page 553: Section Review
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Page 565: Practice Problems
Page 568: Section Review
Page 571: Practice Problems
Page 579: Section Review
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Page 594: Practice Problems
Page 600: Section Review
Page 603: Practice Problems
Page 605: Section Review
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Page 619: Practice Problems
Page 626: Section Review
Page 630: Practice Problems
Page 631: Section Review
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Page 647: Practice Problems
Page 651: Section Review
Page 654: Practice Problems
Page 659: Section Review
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Page 675: Practice Problems
Page 678: Section Review
Page 684: Practice Problems
Page 685: Section Review
Chapter 26: Electromagnetism
Section 26.1: Interactions of Electric and Manetic Fields and Matter
Section 26.2: Electric and Magnetic Fields in Space
Page 718: Assessment
Page 721: Standardized Test Practice
Page 700: Practice Problems
Page 704: Section Review
Page 706: Practice Problems
Page 713: Section Review
Chapter 27: Quantum Theory
Section 27.1: A Particle Model of Waves
Section 27.2: Matter Waves
Page 742: Assessment
Page 745: Standardized Test Practice
Page 730: Practice Problems
Page 734: Section Review
Page 736: Practice Problems
Page 737: Section Review
Chapter 28: The Atom
Section 28.1: The Bohr Model of the Atom
Section 28.2: The Quantum Model of the Atom
Page 770: Assessment
Page 773: Standardized Test Practice
Page 757: Practice Problems
Page 759: Section Review
Chapter 29: Solid-State Electronics
Section 29.1: Conduction in Solids
Section 29.2: Electronic Devices
Page 794: Assessment
Page 797: Standardized Test Practice
Page 778: Practice Problems
Page 783: Section Review
Page 786: Practice Problems
Page 789: Section Review
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice
Page 801: Practice Problems
Page 805: Section Review
Page 808: Practice Problems
Page 814: Section Review
Page 821: Practice Problems
Page 823: Section Review
All Solutions
Page 156: Practice Problems
Exercise 12
Step 1
1 of 2
begin{align*}
intertext{Data given in the problem:}
&v=8.8hspace{1mm}frac{m}{s}\
&r=25hspace{1mm}m
intertext{We are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
&a_c=frac{8.8^2}{25}\
&a_c=3.09hspace{1mm}frac{m}{s^2}
intertext{Friction force acting on the runner, because it is acting on his shoes.}
end{align*}
intertext{Data given in the problem:}
&v=8.8hspace{1mm}frac{m}{s}\
&r=25hspace{1mm}m
intertext{We are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
&a_c=frac{8.8^2}{25}\
&a_c=3.09hspace{1mm}frac{m}{s^2}
intertext{Friction force acting on the runner, because it is acting on his shoes.}
end{align*}
Result
2 of 2
$$
a_c=3.09hspace{1mm}dfrac{m}{s^2}
$$
a_c=3.09hspace{1mm}dfrac{m}{s^2}
$$
Friction force
Exercise 13
Step 1
1 of 2
begin{align*}
intertext{Data given in the problem:}
&v=22hspace{1mm}frac{m}{s}\
&r=56hspace{1mm}m
intertext{First we are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
&a_c=frac{22^2}{56}\
&a_c=8.64hspace{1mm}frac{m}{s^2}
intertext{Now we are looking for minimum
coefficient of static friction if we want car to avoid slipping. }
intertext{We know that friction is:}
&F_f=- mu mgrightarrow\
&mu=frac{F_f}{mg}
intertext{We can put expression for friction:}
&F_f=m a_c\
rightarrow\
&mu=frac{ma_c}{mg}\
&mu=frac{a_c}{g}\
&mu=frac{8.64}{9.8}\
&mu=0.88\
end{align*}
intertext{Data given in the problem:}
&v=22hspace{1mm}frac{m}{s}\
&r=56hspace{1mm}m
intertext{First we are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
&a_c=frac{22^2}{56}\
&a_c=8.64hspace{1mm}frac{m}{s^2}
intertext{Now we are looking for minimum
coefficient of static friction if we want car to avoid slipping. }
intertext{We know that friction is:}
&F_f=- mu mgrightarrow\
&mu=frac{F_f}{mg}
intertext{We can put expression for friction:}
&F_f=m a_c\
rightarrow\
&mu=frac{ma_c}{mg}\
&mu=frac{a_c}{g}\
&mu=frac{8.64}{9.8}\
&mu=0.88\
end{align*}
Result
2 of 2
$$
begin{align*}
&a_c=8.64hspace{1mm}frac{m}{s^2}\
&mu=0.88\
end{align*}
$$
begin{align*}
&a_c=8.64hspace{1mm}frac{m}{s^2}\
&mu=0.88\
end{align*}
$$
Exercise 14
Solution 1
Solution 2
Step 1
1 of 2
begin{align*}
intertext{Data given in the problem:}
&v=201hspace{1mm}frac{m}{s}\
&a_c=5hspace{1mm}frac{m}{s^2}
intertext{First we are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
rightarrow\
&r=frac{v^2}{a_c}\
&r=frac{207^2}{5}\
&r=8569.8hspace{1mm}m
intertext{Let’s convert that into km. We know that $1km=1000m$ or $1m=frac{1}{1000}km$}
&r=8569.8frac{1}{1000}hspace{1mm}km\
&r=8.57hspace{1mm}km\
end{align*}
intertext{Data given in the problem:}
&v=201hspace{1mm}frac{m}{s}\
&a_c=5hspace{1mm}frac{m}{s^2}
intertext{First we are looking for centripetal acceleration, and we can find it using formula:}
&a_c=frac{v^2}{r}\
rightarrow\
&r=frac{v^2}{a_c}\
&r=frac{207^2}{5}\
&r=8569.8hspace{1mm}m
intertext{Let’s convert that into km. We know that $1km=1000m$ or $1m=frac{1}{1000}km$}
&r=8569.8frac{1}{1000}hspace{1mm}km\
&r=8.57hspace{1mm}km\
end{align*}
Result
2 of 2
$$
begin{align*}
&r=8.57hspace{1mm}km\
end{align*}
$$
begin{align*}
&r=8.57hspace{1mm}km\
end{align*}
$$
Step 1
1 of 4
First, let us review the given values,
$$
begin{align*}
v &= 201 ,mathrm{frac{m}{s}}\
a_c &= 5.0 ,mathrm{frac{m}{s^2}}
end{align*}
$$
such that $v$ is the velocity of the airplane and $a_c$ is the maximum centripetal acceleration allowed for the plane.
Step 2
2 of 4
We know that the formula for centripetal acceleration $a_c$ is
$$
begin{align}
a_c = frac{v^2}{r}
end{align}
$$
Step 3
3 of 4
We can isolate the radius $r$ and replace the equal sign $(=)$ with an inequality, less than $(<)$, that suggests $r$ is less than the value obtained in the right-hand-side of the equation.
begin{align*}
a_c &= frac{v^2}{r}\
r &< frac{v^2}{a_c}
intertext{We can now plug in the values.}
r &< frac{(201 ,mathrm{frac{m}{s}})^2}{5.0 ,mathrm{frac{m}{s^2}}}\
r &< 8080.2 ,mathrm{m} \
r &< boxed{8.1 ,mathrm{km}}
end{align*}
Result
4 of 4
$$
r < 8.1 ,mathrm{km}
$$
r < 8.1 ,mathrm{km}
$$
Exercise 15
Step 1
1 of 2
The centripetal acceleration is:
$a_c = dfrac{v^2}{r} = dfrac{(4.1)^2}{6.3} = 2.668 m/s^2$
The force of friction is:
$$
F = m a = (45)*(2.668) = 120 N
$$
Result
2 of 2
$$
120 N
$$
120 N
$$
Haven't found what you were looking for?
Search for samples, answers to your questions and flashcards
unlock