All Solutions
Page 152: Section Review

$h = dfrac{v_{y}^2 – v_{yi}^2}{-2 g}$
The y component of the velocity when the ball reaches the maximum height is zero:
$h = dfrac{(0)^2 – (v_i sin(theta))^2}{-2 g}$
$h = dfrac{(0)^2 – (11.0 sin(50))^2}{-2 (9.80)}$
$$
h = 3.62 m
$$
3.62 m
$$
$-28 = (-1/2) (9.8) t^2 + (-15.0) sin(20) t$
$-28 = (-1/2) (9.8) t^2 – 5.1303 t$
$==> t = 1.924 s$
The horizontal displacement will be:
$$
x = v_i cos(theta) t = (15.0)*(cos20.0)*(1.924) = 27.1 m
$$
– Height: $y = 28 mathrm{~m}$;
– Velocity: $v_0 = 15 ,frac{text{m}}{text{s}}$;
– Angle: $alpha = 20°$;
**Required:**
– The horizontal distance the ball travels $s$;
$$begin{align*}
v &= frac{s}{t} &&(1) \
{v_text y}^2 &= {v_{0, text y}}^2 + 2gy &&(2) \
v_text y – v_{0, text y} &= gt &&(3)
end{align*}$$

$$begin{align*}
sin alpha &= frac{ v_{0, text y} }{ v_0} \
v_{0, text y} &= v_0 cdot sin alpha \
&= 15 ,frac{text{m}}{text{s}} cdot sin 20° \
&= 5.13 ,frac{text{m}}{text{s}}
end{align*}$$
$$begin{align*}
v_text y &= sqrt{ {v_{0, text y}}^2 + 2gy } \
&= sqrt{ left( 5.13 ,frac{text{m}}{text{s}} right)^2 + 2 cdot 9.8 ,frac{text{m}}{text{s}^2} cdot 28 mathrm{~m} } \
&= 24 ,frac{text{m}}{text{s}}
end{align*}$$
$$begin{align*}
t &= frac{ v_text y – v_{0, text y} }{g} \
&= dfrac{ 24 ,frac{text{m}}{text{s}} – 5.13 ,frac{text{m}}{text{s}} }{ 9.8 ,frac{text{m}}{text{s}^2} } \
&= 1.92 mathrm{~s}
end{align*}$$
$$begin{align*}
s &= vt \
&= 5.13 ,frac{text{m}}{text{s}} cdot 1.92 mathrm{~s} \
&= 27.1 mathrm{~m}
end{align*}$$
$$boxed{ s = 27.1 mathrm{~m} }$$
$textbf{b.)}$ time of flight will $textbf{increase}$.
$textbf{c.)}$ $y_{max}$ will $textbf{increase}$.
$textbf{d.)}$ $R$ will $textbf{increase}$.