Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 130: Section Review

Exercise 27
Step 1
1 of 2
Friction, either static or kinetic, causes a friction force. The force of friction in both cases acts in the opposite direction from the external force that wants to move the body. Both frictions can be calculated by multiplying the normal force by the friction factor. The difference is primarily in the amount of friction factor. The kinetic friction factor is usually smaller than the static one, so the kinetic friction force is smaller too.
Result
2 of 2
Their similarities are the direction of action and both are the product of normal force and friction factors, the difference is in the amount and moment of action.
Exercise 28
Step 1
1 of 2
In this task we will calculate the friction force for the given data.

Known:

$$
begin{align*}
m&=25 mathrm{kg} \
mu &=0.15 \
end{align*}
$$

Unknown:

$$
begin{align*}
F_f&=? \
\
F_N&=F_g \
&=mcdot g \
&=25 mathrm{kg}cdot 9.8 mathrm{m/s^2} \
&=24.5 mathrm{N} \
\
F_f&=mucdot F_N \
&=0.15cdot 245 mathrm{N} \
&=boxed{36.75 mathrm{N}}
end{align*}
$$

Result
2 of 2
$$
F_f=36.75 mathrm{N}
$$
Exercise 29
Step 1
1 of 2
In this task we will calculate the initial velocity for the given data.

Known:

$$
begin{align*}
m&=2.3 mathrm{g} \
s&=0.35 mathrm{m} \
mu&=0.24 \
end{align*}
$$

Unknown:

$$
begin{align*}
v_i&=? \
\
F&=F_f \
mcdot a&=mucdot F_g \
mcdot a&=mu cdot mcdot g \
a&=0.24cdot cdot 9.8 mathrm{m/s^2} \
&=2.352 mathrm{m/s^2} \
\
v_i^2&=2cdot acdot s \
v_i&=sqrt{2cdot 2.352 mathrm{m/s^2}cdot 0.35 mathrm{m}} \
&=boxed{1.283 mathrm{m/s}}
end{align*}
$$

Result
2 of 2
$$
v_i=1.283 mathrm{m/s}
$$
Exercise 30
Step 1
1 of 2
In this task we will calculate the maximum force for the given data.

Known:

$$
begin{align*}
m&=40 mathrm{kg} \
mu&=0.43 \
end{align*}
$$

Unknown:

$$
begin{align*}
F_{max}&=? \
\
F_{max}&=F_f \
&=mucdot cdot mcdot g \
&=0.43cdot 40 mathrm{kg}cdot 9.8 mathrm{m/s^2} \
&=boxed{168.6 mathrm{N}}
end{align*}
$$

Result
2 of 2
$$
F_{max}=168.6 mathrm{N}
$$
Exercise 31
Step 1
1 of 2
Friction between the truck and the dresser will accelerate the dresser forward.
Step 2
2 of 2
However, if the force accelerating the dresser is greater than $(mu)_{s}mg$, then the dresser will slide backward.
Exercise 32
Step 1
1 of 2
In this task we will calculate the friction factors for the given data.

Known:

$$
begin{align*}
m&=13 mathrm{kg} \
F_1&=20 mathrm{N} \
F_2&=25 mathrm{N} \
a_1&=0 mathrm{m/s^2} \
a_2&=0.26 mathrm{m/s^2} \
end{align*}
$$

Unknown:

$$
begin{align*}
mu_s&=? \
mu_k&=? \
\
a_1&=0 mathrm{m/s^2} Rightarrow F_{fs}>F_1 \
F_{fs}&>F_1 \
mu_scdot mcdot g&> 20 mathrm{N} \
mu_s&>dfrac{20 mathrm{N}}{mcdot g} \
mu_s&>dfrac{20 mathrm{N}}{13 mathrm{kg}cdot 9.8 mathrm{m/s^2}} \
mu_s&>boxed{0.157} \
\
F_2&=F+F_{fk} \
F_2&=mcdot a+mu_kcdot mcdot g \
mu_k&=dfrac{F_2-mcdot a}{mcdot g} \
&=dfrac{25 mathrm{N}-13 mathrm{kg}cdot 0.26 mathrm{m/s^2}}{13 mathrm{kg}cdot 9.8 mathrm{m/s^2}} \
&=boxed{0.1697}
end{align*}
$$

Result
2 of 2
$$
begin{align*}
mu_s&>0.157 \
mu_k&=0.1697
end{align*}
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New