Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 117: Standardized Test Practice

Exercise 1
Step 1
1 of 2
In order to determine the acceleration in the $v-t$ graph we need to determine the slope of the direction. We need two points for that. One should be $(0,0)$ and the other point should be one with integer values for easier calculation. One such point is $(4, 10)$.

$$
begin{align*}
v_i&=0 mathrm{m/s} \
v_f&=10 mathrm{m/s} \
t_i&=0 mathrm{s} \
t_f&=4 mathrm{s} \
a&=? \
\
a&=dfrac{v_f – v_i}{t_f – t_i} \
&=dfrac{10 mathrm{m/s}-0 mathrm{m/s}}{4 mathrm{s}-0 mathrm{s}} \
&=2.5 mathrm{m/s^2}
end{align*}
$$

Result
2 of 2
D, $a=2.5 mathrm{m/s^2}$
Exercise 2
Step 1
1 of 2
In this task, we will calculate the stopping distance for a known acceleration and braking time.

Known:

$$
begin{align*}
t&=4 mathrm{s} \
a&=2.5 mathrm{m/s^2} \
end{align*}
$$

Unknown:

$$
begin{align*}
s&=? \
\
s&=dfrac{acdot t^2}{2} \
&=dfrac{2.5 mathrm{m/s^2}cdot 4^2 mathrm{s^2}}{2} \
&=boxed{20 mathrm{m}}
end{align*}
$$

Result
2 of 2
$$
s=20 mathrm{m}
$$
Exercise 3
Solution 1
Solution 2
Step 1
1 of 2
$v_f = v_i + a t$

$v_f = 0.0 + (2.5) (10)$

$v_f = 25 m/s$

We should convert m/s to km/h:

$1 m/s = 3.6 km/h$

$$
==> v_f = (25*3.6) km/h = 90 km/h
$$

Result
2 of 2
$$
90 km/h
$$
Step 1
1 of 7
**Approach**

The acceleration $a$ stands for change in velocity $v$ over time interval $t$, or: $dfrac{v}{t}$. If we want acceleration to be constant, we want $dfrac{v}{t}$ to be the same value for each point on the graph. This is represented with the straight line given on the graph $-$ so the acceleration
on velocity-time graph is the rise over run of the given line. We can thus calculate this acceleration, and find the velocity for the given time $t=10mathrm{~sec}$.

Step 2
2 of 7
As mentioned, the acceleration is equal to rise over run on the velocity-time graph:

$$begin{align}
a=mathrm{dfrac{rise}{run}}
end{align}$$

To find this let’s use the points $(0,0)$ and $(4,10)$. Thus, the rise is equal to:

$$mathrm{rise}=10-0=10$$

And run is equal to:
$$mathrm{run}=4-0=4$$

Step 3
3 of 7
Now, using the rise and run we found in equation $(1)$, we get:

$$begin{align}
a&=mathrm{dfrac{rise}{run}} nonumber
\&=dfrac{10}{4} nonumber
\&=2.5mathrm{~dfrac{m}{s^2}}
end{align}$$

With this acceleration, we can now find the velocity $v$ at given time $t=10mathrm{~sec}$.

Step 4
4 of 7
To find the velocity $v$ at the time $t$, using the acceleration $(2)$, we can simply use the definition of acceleration as change in velocity $v-v_0$ over time interval $t-t_0$:
$$begin{align}
a=dfrac{v-v_0}{t-t_0}
end{align}$$
Where $v$ is the velocity at time $t$ and $v_0$ is the velocity at $t_0$.
Step 5
5 of 7
Looking at the given graph, we can take $(t_0,v_0)$ simply to be $(0,0)$. Using this in equation $(3)$, we get:
$$begin{align}
a&=dfrac{v-v_0}{t-t_0} nonumber
\&=dfrac{v}{t}rightarrow v=acdot t
end{align}$$

Now we can finally calculate the velocity $v$ using equation $(4)$.

Step 6
6 of 7
Calculation:

$$begin{aligned}
v&=acdot t
\&=2.5cdot 10
\&={25mathrm{~dfrac{m}{s}}}
end{aligned}$$

Converting to $mathrm{dfrac{km}{h}}$, we get:
$$begin{aligned}
v&={25mathrm{~dfrac{m}{s}}}cdot 3600cdotdfrac{1}{1000}=boxed{90mathrm{~dfrac{km}{h}}}
end{aligned}$$

Result
7 of 7
$mathrm{C}$, $v=90mathrm{dfrac{km}{h}}$
Exercise 4
Step 1
1 of 2
In this task we will consider the game of pulling the rope and we will calculate the acceleration for the given data.

Known:

$$
begin{align*}
m_c&=30 mathrm{kg} tag{average mass of child} \
m_p&=60 mathrm{kg} tag{ average mass of parent} \
F_c&=150 mathrm{N} tag{average force of child} \
F_p&=475 mathrm{kg} tag{average force of parent} \
N_c&=13 \
N_p&=5 \
end{align*}
$$

Unknown:

$$
begin{align*}
a&=? \
\
F_{net}&=N_pcdot F_p – N_ccdot F_c \
&=5cdot 475 mathrm{N} – 13cdot 150 mathrm{N} \
&=425 mathrm{N hat{E}} tag{ $mathrm{hat{E}}$ is direction (Eastward)} \
\
F&=mcdot a \
a&=dfrac{F}{m} \
&=dfrac{F_{net}}{N_ccdot m_c+N_pcdot m_p } \
&=dfrac{425 mathrm{N hat{E}}}{13cdot 30 mathrm{kg}+5cdot 60 mathrm{kg}} \
&=boxed{0.6159 mathrm{m/s^2 hat{E}}}
end{align*}
$$

Result
2 of 2
$a=0.6159 mathrm{m/s^2} mathrm{hat{E}}$.
Exercise 5
Solution 1
Solution 2
Step 1
1 of 2
$F = m g$

$F = (225)*(1.62)$

$$
F = 364 m/s^2
$$

Result
2 of 2
$$
364 m/s^2
$$
Step 1
1 of 4
**Given information**

– Probe mass: $m=225mathrm{~kg}$
– Acceleration: $a_{moon}=1.62mathrm{~dfrac{m}{s^2}}$

**Objective**
– Find the weight $W$.

Step 2
2 of 4
**Approach**

The weight of an object $W$ is defined as a force that the object experiences due to gravity $F_g=mcdot a_{grav}$. Where $a_{grav}$ is the acceleration constant at the place of measurement (in case of measuring on Earth: $a_{grav}=gapprox9.81mathrm{~dfrac{m}{s^2}}$).

In our case: $a_{grav}=a_{moon}$. Using definition of weight, we can now simply calculate.

Step 3
3 of 4
Calculating the weight:

$$begin{aligned}
W=F_g&=mcdot a_{grav}
\&=225cdot 1.62
\&approxboxed{364mathrm{~N}}
end{aligned}$$

So the answer is $mathrm{B}$.

Result
4 of 4
$mathrm{B}$, $W=364mathrm{~N}$
Exercise 6
Step 1
1 of 2
In this task we will calculate the rope tension force for the given data.

Known:

$$
begin{align*}
m_C&=45 mathrm{kg} \
m_S&=3.2 mathrm{kg} \
g&=9.8 mathrm{m/s^2} \
end{align*}
$$

Unknown:

$$
begin{align*}
F_T&=? \
\
F_T&=F_{gC}+F_{gS} \
&=m_Ccdot g+m_Scdot g \
&=gcdot (m_C+m_S) \
&=9.8 mathrm{m/s^2}cdot (45 mathrm{kg}+3.2 mathrm{kg}) \
&=boxed{472.4 mathrm{N}}
end{align*}
$$

Result
2 of 2
D, $F_T=472.4 mathrm{N}$
Exercise 7
Step 1
1 of 2
In this task, we will calculate the force applied to the ground for the given data.

Known:

$$
begin{align*}
F_T&=220 mathrm{N} \
F_G&=472.4 mathrm{N} tag{Note that we included the weight of both the swing and the child in $F_g$} \
end{align*}
$$

Unknown:

$$
begin{align*}
F_n&=? \
\
F_n&=F_g-F_T \
&=472.4 mathrm{N}-220 mathrm{N} \
&=boxed{252.4 mathrm{N}}
end{align*}
$$

Result
2 of 2
B, $F_n=2.5cdot 10^2mathrm{N}$
Exercise 8
Step 1
1 of 2
In this task, we will calculate the force exerted on the cart for the given data.

Known:

$$
begin{align*}
m&=16 mathrm{kg} \
v_i&=0 mathrm{m/s} \
v_f&=6 mathrm{m/s} \
t_i&=0 mathrm{s} \
t_f&=3 mathrm{s} \
end{align*}
$$

Unknown:

$$
begin{align*}
F&=? \
\
a&=dfrac{v_f-v_i}{t_f-t_i} \
&=dfrac{6 mathrm{m/s}}{3 mathrm{s}} \
&=2 mathrm{m/s^2} \
\
F&=mcdot a \
&=16 mathrm{kg}cdot 2 mathrm{m/s^2} \
&=boxed{32 mathrm{N}}
end{align*}
$$

Result
2 of 2
D, $F=32 mathrm{N}$
Exercise 9
Step 1
1 of 4
The first diagram shows the situation when the elevator is moving at a constant speed. The second diagram represents the acceleration upwards while the third diagram shows when the elevator is in free fall.Exercise scan
Step 2
2 of 4
Positive direction: upward

$$
begin{align*}
F_g& tag {weight} \
F_s& tag{force shown on scale} \
\
F_s&=-F_g+F \
F_s&=-mcdot -g +mcdot a\
&=mcdot (g+a)
end{align*}
$$

Step 3
3 of 4
Pay attention to the positive direction. The first line does not represent Newton’s third law because $F_g$ and $F_s$ are not an interaction pair. The above expression is the result of scale force $F_s$ and weight $F_G$ being of equal amount and opposite direction. We see that the force $F_s$ is the sum of gravity and inertial force. When including acceleration in an expression, care should be taken with the sign. If the elevator accelerates upwards or slows downwards the acceleration is positive and the apparent weight is higher. When the elevator deccelerates moving up or accelerates down, the amount of apparent force is reduced by the amount of inertial. It should also be noted that there is no inertial force on the force diagram. The reason is that it is apparent, ie it is not the result of the interaction of two bodies.
Result
4 of 4
For free body diagrams see the explanation. The expression for the force of apparent weight is $F_s=mcdot (g+a)$.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New