All Solutions
Page 107: Section Review
Care should be taken when determining interaction pairs. these forces although they are of the $textbf{same amount and opposite direction}$ these two forces are $textbf{not an interaction pair}$ for the reason that these two forces are the result of the action of $textbf{two different bodies}$ on the book ($F_g$ -Earth and $F_{hb}$ hand).
$textbf{The interaction pairs of forces are: $ F_ {hb}$ and $F_ {bh} $}$ the force with which the hand acts on the book and the force with which the book acts on the hand and $textbf{$ F_g$ and $F_ {bE} $}$ the force of gravity with which the Earth attracts the book and the force with which the book attracts the Earth .
**Known:**
$$begin{align*}
m&=5 mathrm{kg} \
g&=9.8 mathrm{m/s^2}
end{align*}$$
**Unknown:**
– The tension force in rope between ceiling and first block, $F_{t1}$
– The tension force between first and second block, $F_{t2}$
$$begin{align*}
F_g&=mcdot g \
\
F_{g2}&=mcdot g \
&=5 mathrm{kg}cdot 9.8 mathrm{m/s^2} \
&=49 mathrm{N} \
\
F_{t2}&=F_{g2} \
&=boxed{49 mathrm{N}}
end{align*}$$
$$begin{align*}
F_{t1}&=F_{g1}+F_{t2} \
&=mg+F_{t2} \
&=49 mathrm{N}+49 mathrm{N} \
&=boxed{98 mathrm{N}}
end{align*}$$
Note that the tension force of the rope is $F_{t1} = 2 cdot F_{t2}$.
F_{t1}&=98 mathrm{N} \
F_{t2}&=49 mathrm{N}
end{align*}$$
$$
begin{align*}
F_{T1}&=63 mathrm{N} \
m_2&=3 mathrm{kg} \
m_1&=?
end{align*}
$$
From the last problem we know that the tension of the rope $F_ {T2}$ on which the second block hangs is equal to its weight $F_ {g2}$, while the tension force of the rope $F_ {T1}$ on which the first block hangs is equal to the sum of its weight $F_ {g1}$ and rope tension $F_ {T2}$.
$$
begin{align*}
F_{T2}&=F_{g2} \
&=m_2cdot g \
&=3 mathrm{kg}cdot 9.8 mathrm{m/s^2} \
&=29.4 mathrm{N} \
\
F_{T1}&=F_{g1}+F_{T2} \
F_{T1}&=m_1cdot g+F_{T2} \
m_1&=dfrac{F_{T1}-F_{T2}}{g} \
&=dfrac{63 mathrm{N}-29.4 mathrm{N}}{9.8 mathrm{m/s^2}} \
&=boxed{3.429 mathrm{kg}}
end{align*}
$$
m_1=3.429 mathrm{kg}
$$
Known:
$$
begin{align*}
m_b&=13 mathrm{kg} \
m_S&=61 mathrm{kg}
end{align*}
$$
Unknown:
$$
begin{align*}
g&=9.8 mathrm{m/s^2} \
F_p&=? tag{force exerted on platform}
end{align*}
$$
$$
begin{align*}
F_p&=F_{gS}+F_{gB} \
&=m_Sg+m_Bg \
&=61 mathrm{kg}cdot 9.8 mathrm{m/s^2}+13 mathrm{kg}cdot 9.8 mathrm{m/s^2} \
&=boxed{725.2 mathrm{N}}
end{align*}
$$
F_p=725.2 mathrm{N}
$$
F_T=500 mathrm{N}
$$