All Solutions
Page 669: Standardized Test Practice
$$
F=ILB
$$
From here, we can express the wire’s length as
$$
L=frac{F}{IB}
$$
If we now plug in the values we obtain the following
$$
L=frac{2.1}{7.2times 0.0089}
$$
Finally
$$
boxed{L=3.3 times 10^1textrm{m}}
$$
So, the answer is D.
textrm{D; }L=3.3 times 10^1textrm{m}
$$
$$
F=ILB
$$
From here, we can express the current as
$$
I=frac{F}{LB}
$$
If we now plug in the values we obtain the following
$$
I=frac{7.6times 10^{-3}}{0.19times 4.1}
$$
Finally
$$
boxed{I=9.8times 10^{-3}textrm{ A}}
$$
So, the answer is B.
textrm{B; }I=9.8times 10^{-3}textrm{ A}
$$
$$
vec F=qvec vtimes vec B=qvB
$$
If we now plug in the values we obtain the following
$$
F=7.12times 10^{-6}times 3times 10^8times 4.02times 10^{-3}
$$
Finally
$$
boxed{F=8.59textrm{ N}}
$$
So the answer is A.
textrm{A; }F=8.59textrm{ N}
$$
$$
vec F=qvec vtimes vec B=qvB
$$
From here, we can express the magnetic field as
$$
B=frac{F}{qv}
$$
If we now plug in the values we obtain the following
$$
B=frac{18}{1.6times 10^{-19}times 7.4times 10^5}
$$
Finally
$boxed{B=1.52 times 10^{14}textrm{ T}}$
So the answer is D.
textrm{D; }B=1.52 times 10^{14}textrm{ T}
$$
$B=mu_0mu_rfrac{NI}{L}$
so we see that it depends on the core type ($mu_r$), number of turns ($N$), and the strength of the current ($I$) but doesn’t depend on the thickness of the wire $d$. So the answer is C.
$$
vec F=qvec vtimes vec B=qvB
$$
If we now plug in the values we obtain the following
$$
F=1.6times 10^{-19}times 4times 10^6times 0.25
$$
Finally
$boxed{F=1.6times 10^{-13}textrm{ N}}$
And by using the first right-hand rule we obtain that the force points to the left so the answer is A.
textrm{A) }F=1.6times 10^{-13}textrm{ N}
$$
$$
F=qvB
$$
So we can express the magnetic field as
$$
B=frac{F}{qv}=frac{ma}{qv}
$$
Or in terms of units
$$
textrm{T}=frac{textrm{kg}cdotfrac{textrm{m}}{textrm{s}^2}}{textrm{C}cdot frac{textrm{m}}{textrm{s}}}
$$
$$
boxed{textrm{T}=frac{textrm{kg}}{textrm{C}cdottextrm{s}}}
$$
On the other hand, if we start from
$$
F=ILB
$$
$$
B=frac{F}{IL}=frac{ma}{frac{q}{t}L}
$$
Again, in terms of units
$$
T=frac{textrm{kg}cdotfrac{textrm{m}}{textrm{s}^2}}{{textrm{m}cdot frac{textrm{C}}{textrm{s}}}}
$$
which again gives
$$
boxed{textrm{T}=frac{textrm{kg}}{textrm{C}cdottextrm{s}} }
$$
textrm{T}=frac{textrm{kg}}{textrm{C}cdottextrm{s}}
$$
$$
I=frac{V}{R}=frac{5.8}{18}
$$
which gives that
$$
I=0.32textrm{A}
$$
Now, the angle can be found from the formula
$$
F=ILBsintheta
$$
which can be solved for $theta$ to give
$$
theta=arcsin(frac{F}{ILB})
$$
$$
theta=arcsin(frac{22times 10^{-3}}{0.32times 0.14times 0.85})
$$
Which finally gives us that
$$
boxed{theta=35.3^circ}
$$
theta=35.3^circ
$$