All Solutions
Page 539: Standardized Test Practice
$$
begin{align}
2cdot x=frac{2cdot lambdacdot L}{w} \
end{align}
$$
So we write
$$
begin{align}
2cdot x&=frac{2cdot lambdacdot L}{w} \
2cdot x&=frac{2cdot 4.1times 10^{-7}mcdot 0.29text{ m}}{3.8times 10^{-6}m} \
&boxed{2cdot x=6.26times 10^{-2}m}
end{align}
$$
From basic geometry, we can conclude
$$
begin{align}
tantheta&=frac{x}{L} \
theta&=arctan {frac{x}{L}}
end{align}
$$
$$
begin{align}
&theta=arctan {frac{3.13times 10^{-2}text{ m}}{0.29text{ m}}} \
&boxed{theta=6.15^{circ}}
end{align}
$$
$$
begin{align}
{x_{obj}}=frac{1.22cdotlambdacdot L_{obj}}{D}
end{align}
$$
We need to convert light years into meters to solve the equation.
$$
begin{align}
&{D}=frac{1.22cdotlambdacdot L_{obj}}{x_{obj}} \
&{D}=frac{1.22cdot6.1times10^{-7}text{ m}cdot 5.87times10^{20}text{m}}{2.93times10^{16}text{m}} \
&boxed{D=1.49times10^{-2}text{m}}
end{align}
$$
The definition of the wavelength from a diffraction grating is
$$
begin{align}
sintheta=frac{lambda}{d}
end{align}
$$
$$
begin{align}
sin&theta=frac{lambda}{d} \
&theta=arcsin{frac{lambda}{d}} \
&theta=arcsin{frac{6.5times10^{-7}text{ m}}{5.5times 10^{-5}text{ m}}} \
&boxed{theta=0.68^{circ}}
end{align}
$$
$$
begin{align}
lambda&=frac{xcdot d}{L} \
end{align}
$$
Since we have a distance for third-order band, we use $frac{3cdot x}{3}=2.5times 10^{-2}text{ m}$.
begin{align}
&d=frac{lambdacdot L}{x} \
&d=frac{6.38times 10^{-7}text{ m}cdot 2.475text{ m}}{2.5times 10^{-2}text{ m}} \
&boxed{d=6.32times 10^{-5}text{ m}}
end{align}
$$
$$
begin{align}
lambda&=frac{xcdot d}{L} \
end{align}
$$
Since we have a distance for third-order band, we use $frac{2cdot x}{2}=4.1times 10^{-2}text{ m}$.
begin{align}
lambda&=frac{xcdot d}{L} \
lambda&=frac{4.1times 10^{-2}text{ m}cdot 5.3times 10^{-5}text{ m}}{4.2text{ m}} \
&boxed{lambda=5.17times 10^{-5}m}
end{align}
$$
$$
begin{align}
d=frac{1}{2}cdotleft(m+frac{1}{2} right)cdotfrac{lambda}{n_{f}}
end{align}
$$
$$
begin{align}
&d=frac{1}{2}cdotleft(0+frac{1}{2} right)cdotfrac{6.5times 10^{-7}text{ m}}{1.41} \
&boxed{d=1.15times 10^{-7}m}
end{align}
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
So we write
$$
begin{align}
&lambda=1.67times10^{-6}text{ m}cdotsin20^{circ} \
&boxed{lambda=5.7times 10^{-7}text{ m}}
end{align}
$$
lambda=5.7times 10^{-7}text{ m}
$$