All Solutions
Page 169: Standardized Test Practice
$y = (-1/2) g t^2 + v_i sin(theta) t$
$-1.60 = (-1/2) (9.80) t^2 + (9.40) sin(41.0) t$
$==> t = 1.479 s$
The horizontal distance is:
$$
x = v_x t = (v_i cos(41.0)) t = (9.40 cos(41.0)) (1.479) = 10.5 m
$$
$a_c = dfrac{0.89^2}{2.8}$
$$
a_c = 0.28 m/s^2
$$
0.28 m/s^2
$$
– Radius: $r = 2.8 mathrm{~m}$;
– Velocity: $v = 0.89 ,frac{text{m}}{text{s}}$;
**Required:**
– The acceleration $a_text c$;
$$begin{align*}
a_text c &= frac{v^2}{r} \
&= dfrac{ left( 0.89 ,frac{text{m}}{text{s}} right)^2}{2.8 mathrm{~m}} \
&= 0.28 ,frac{text{m}}{text{s}^2}
end{align*}$$
$$boxed{ a_text c = 0.28 ,frac{text{m}}{text{s}^2} }$$
$a_c = dfrac{F}{m} = dfrac{4.0}{0.82} = 4.878 m/s^2$
The equation of the centripetal acceleration is:
$a_c = dfrac{v^2}{r}$
Thus:
$$
v = sqrt{r a_c} = sqrt{(2.0)*(4.878)} = 3.1 m/s
$$
3.1 m/s
$$
$a_c = dfrac{v^2}{r} = dfrac{(20.0)^2}{80.0} = 5.00 m/s^2$
The force is:
$F = m a = (1000) (5.00) = 5.0 times 10^3 N$
5.0 times 10^3 N
$$
We should convert km/h to m/s:
$$
v = (30 km/h) (dfrac{1 m/s}{3.6 km/h}) = 8 m/s
$$
8 m/s
$$
16 m
$$
– Mass: $m = 125 mathrm{~g}$;
– Angle: $alpha = 78°$;
– Velocity: $v_0 = 18 ,frac{text{m}}{text{s}}$;
**Required:**
– The maximum height an apple reaches $y$;
$$begin{align*}
{v_text y}^2 &= {v_{0, text y}}^2 + 2gy
end{align*}$$

$$begin{align*}
sin alpha &= frac{ v_{0, text y} }{ v_0} \
v_{0, text y} &= v_0 cdot sin alpha \
&= 18 ,frac{text{m}}{text{s}} cdot sin 78° \
&= 17.61 ,frac{text{m}}{text{s}}
end{align*}$$
$$ y = frac{{v_text y}^2 – {v_{0, text y}}^2 }{2g} $$
$$begin{align*}
y &= frac{- {v_{0, text y}}^2 }{2g} \
&= frac{- left( 17.61 ,frac{text{m}}{text{s}} right)^2}{2 cdot left( – 9.8 ,frac{text{m}}{text{s}^2} right) } \
&= 15.8 mathrm{~m} \
&approx 16 mathrm{~m}
end{align*}$$
$$boxed{ y approx 16 mathrm{~m} }$$
$t = sqrt{dfrac{-2y}{g}} = sqrt{dfrac{(-2)(52)}{9.8}} = 3.258 s$
The horizontal displacement of the ball is:
$x = v_x t = (25) (3.258) = 81 m$
Thus the ball will past the ring.
$a_c = dfrac{4 pi^2 r}{T^2} = dfrac{(4)*(3.14)^2*(0.86)}{(1.8)^2} = 10.5 m/s^2$
The tension in the magical chain is:
$$
F = m a = (5.6) (10.5) = 59 N
$$
59 N
$$