All Solutions
Section 7-6: Geometric Series
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
The sum of first seven terms is
$$
S_7=6cdot dfrac{3^7-1}{3-1}=6558
$$
The sum of the first seven terms is
$$
S_7=100cdot dfrac{0.5^7-1}{0.5-1}=198.4375
$$
The sum of the first seven terms is
$$
S_7=8cdot dfrac{(-3)^7-1}{(-3)-1}=4376
$$
The sum of the first seven terms is
$$
S_7=dfrac{1}{3}cdot dfrac{(0.5)^7-1}{(0.5)-1}=dfrac{127}{192}
$$
b.) 198.4375
c.) 4376
d.) $dfrac{127}{192}$
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$$
S_6=11cdot dfrac{4^6-1}{4-1}=15;015
$$
S_6=15;015
$$
$t_n=t_1cdot r^{n-1}$
$bold{Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
The $n^{th}$ term is
$t_n=6cdot 5^{n-1}$
Sixth term: $t_6=6cdot 5^{6-1}=18750$
The sum of first six terms is
$$
S_6=6cdot dfrac{5^6-1}{5-1}=23;436
$$
The $n^{th}$ term is
$t_n=(-11)cdot 3^{n-1}$
Sixth term: $t_6=(-11)cdot 3^{6-1}=-2673$
The sum of first six terms is
$$
S_6=(-11)cdot dfrac{3^6-1}{3-1}=-4004
$$
The $n^{th}$ term is
$t_n=(21;000;000)cdot (0.2)^{n-1}$
Sixth term: $t_6=21;000;000cdot (0.2)^{6-1}=6720$
The sum of first six terms is
$$
S_6=(21;000;000)cdot dfrac{0.2^6-1}{0.2-1}=26;248;320
$$
The $n^{th}$ term is
$t_n=left(dfrac{4}{5}right)cdot left(dfrac{2}{3}right)^{n-1}$
Sixth term: $t_6=dfrac{4}{5}cdot left(dfrac{2}{3}right)^{6-1}=dfrac{4}{5}cdot dfrac{2^5}{3^5}=dfrac{128}{1215}$
The sum of first six terms is
$$
S_6=left(dfrac{4}{5}right)cdot dfrac{(2/3)^6-1}{(2/3)-1}=dfrac{532}{243}
$$
The $n^{th}$ term is
$t_n=left(3.4right)cdot left(-2.1right)^{n-1}$
Sixth term: $t_-6=3.4cdot(-2.1)^5approx-138.8594$
The sum of first six terms is
$$
S_6=left(3.4right)cdot dfrac{(-2.1)^6-1}{(-2.1)-1}approx -92.9693
$$
The $n^{th}$ term is
$t_n=1cdot(3x^2)^{n-1}=(3x^2)^{n-1}$
Sixth term: $t_6=(3x^2)^{6-1}=3^5x^{10}=243x^{10}$
The sum of first six terms is
$$
S_6=1cdot dfrac{(3x^2)^6-1}{3x^2-1}=dfrac{729x^{12}-1}{3x^2-1}
$$
b.) 198.4375
c.) 4376
d.) $dfrac{127}{192}$
geometric $implies dfrac{t_2}{t_1}=dfrac{t_3}{t_2}=dfrac{t_4}{t_3}=dfrac{t_n}{t_{n-1}}=r$
arithmetic $implies t_2-t_1=t_3-t_2=t_4-t_3=t_n-t_{n-1}=d$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
The sum of first 8 terms is
$S_8=7cdot dfrac{3^8-1}{3-1}=22;960$
The sum of first 8 terms is
$S_8=2048cdot dfrac{left(dfrac{1}{4}right)^8-1}{dfrac{1}{4}-1}=dfrac{13;107}{8}$
The sum of first 8 terms is
$S_8=1.1cdot dfrac{1.1^8-1}{1.1-1}=12.579$
b.) 22 960
c.) $dfrac{13;107}{8}$
d.) neither arithmetic nor geometric
e.) 12.579
f.) arithmetic
geometric $implies dfrac{t_2}{t_1}=dfrac{t_3}{t_2}=dfrac{t_4}{t_3}=dfrac{t_n}{t_{n-1}}=r$
arithmetic $implies t_2-t_1=t_3-t_2=t_4-t_3=t_n-t_{n-1}=d$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
Thus sum of the seven terms is
$$
S_7=13cdot dfrac{5^7-1}{5-1}=253;903
$$
From the general term of arithmetic sequence
$t_n=t_1cdot r^{n-1}implies 704=11cdot r^{7-1}implies r=pm 2$
for $r=2implies S_7=11cdot dfrac{2^7-1}{2-1}=1397$
for $r=-2implies S_7=11cdot dfrac{(-2)^7-1}{(-2)-1}=473$
We shall evaluate $S_7$
$$
S_7=120cdot dfrac{left(dfrac{1}{4}right)^7-1}{dfrac{1}{4}-1}=159.9902
$$
We can use the general term for geometric sequence to find the first term $t_1$.
$t_n=t_1cdot r^{n-1}implies 18=t_1cdot r^{3-1}implies t_1=2$
Now, we can use the formula for geometric series to evaluate $S_7$
$$
S_7=2dfrac{3^7-1}{3-1}=2186
$$
$1024=t_1cdot left(dfrac{2}{3}right)^{8-1}implies t_1=17496$
Now, we can evaluate $S_7$
$$
S_7=17496cdot dfrac{(2/3)^7-1}{(2/3)-1}=49;416
$$
$-40=t_1cdot r^{8-1}$ and $-8=t_1cdot r^{5-1}$
Equate the $t_1$ from the first equation to the second equation.
$dfrac{-40}{r^7}=dfrac{-8}{r^4}implies r^3=-8implies r=-2$
So $t_1=dfrac{-40}{(-2)^7}=dfrac{5}{16}$
Now, we can evaluate $S_7$
$$
S_7=dfrac{5}{16}cdot dfrac{(-2)^7-1}{(-2)-1}=dfrac{215}{16}
$$
b.) 1397 or 473
c.) 159.9902
d.) 2186
e.) 49 416
f.) $dfrac{215}{16}$
geometric $implies dfrac{t_2}{t_1}=dfrac{t_3}{t_2}=dfrac{t_4}{t_3}=dfrac{t_n}{t_{n-1}}=r$
arithmetic $implies t_2-t_1=t_3-t_2=t_4-t_3=t_n-t_{n-1}=d$
$bold{General;Term;of;Geometric;Sequence:}$ The $n^{th}$ term of a geometric sequence with first term $t_1$ and common ratio $r$ is
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
General Term: $t_n=1cdot 6^{n-1}=6^{n-1}$
To know what value of $n$ that satisfies $t_n=279;936$, we can use the formula for general term
$279;936=1cdot 6^{n-1}$
$6^7=6^{n-1}implies n=8$
The sum of the series containing 9 terms is
$S_9=1cdot dfrac{6^8-1}{6-1}=335;923$
General Term: $t_n=960cdot (0.5)^{n-1}$
To know what value of $n$ that satisfies $t_n=15$, we can use the formula for general term
$15=960cdot left(dfrac{1}{2}right)^{n-1}$
$dfrac{1}{2^{n-1}}=dfrac{15}{960}implies dfrac{1}{2^{n-1}}=dfrac{1}{2^6}implies n=7$
The sum of the series containing 7 terms is
$S_7=960cdot dfrac{(0.5)^7-1}{0.5-1}=1905$
General Term: $t_n=17cdot (-3)^{n-1}$
To know what value of $n$ that satisfies $t_n=334;611$, we can use the formula for general term
$334;611=17cdot left(-3right)^{n-1}$
$dfrac{334;611}{17}=(-3)^{n-1}$
$implies 19683=(-3)^{n-1}implies (-3)^{9}=(-3)^{n-1}implies n =10$
The sum of the series containing 10 terms is
$S_{10}=17cdot dfrac{(-3)^{10}-1}{(-3)-1}=-250;954$
General Term: $t_n=24;000cdot (0.15)^{n-1}$
To know what value of $n$ that satisfies $t_n=1.8225$, we can use the formula for general term
$1.8225=24;000cdot left(0.15right)^{n-1}$
$0.000;075;937;5=0.15^{n-1}$
$0.15^5=0.15^{n-1}implies n = 6$
The sum of the series containing 6 terms is
$S_{6}=24;000cdot dfrac{(0.15)^{6}-1}{(0.15)-1}=28;234.9725$
General Term: $t_n=-6cdot (-4)^{n-1}$
To know what value of $n$ that satisfies $t_n=98304$, we can use the formula for general term
$98;304=-6left(-4right)^{n-1}$
$dfrac{98;304}{-6}=(46)^{n-1}implies -16;384=(-4)^{n-1}$
$(-4)^7=(-4)^{n-1}implies n = 8$
The sum of the series containing 8 terms is
$S_{8}=(-6)cdot dfrac{(-4)^{8}-1}{(-4)-1}=78;642$
General Term: $t_n=4cdot (0.5)^{n-1}$
To know what value of $n$ that satisfies $t_n=dfrac{1}{1024}$, we can use the formula for general term
$dfrac{1}{1024}=4left( dfrac{1}{2}right)^{n-1}$
$dfrac{1/1024}{4}=left(dfrac{1}{2}right)^{n-1}implies dfrac{1}{4096}=dfrac{1}{2^{n-1}}$
$dfrac{1}{2^{12}}=dfrac{1}{2^{n-1}}implies n = 13$
The sum of the series containing 13 terms is
$S_{13}=(4)cdot dfrac{(0.5)^{13}-1}{(0.5)-1}=dfrac{8191}{1024}$
b.) 1905
c.) $-250;954$
d.) 28 234.9725
e.) 78 642
f.) $dfrac{8191}{1024}$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$D_4=3+2left[ 1.8cdot dfrac{(0.6)^4-1}{0.6-1}right]=10.8336;m$
At the end of 4th bounce, the ball has covered a total of $boxed{bold{10.8336;m}}$.
$D_4=3+2[3(0.6)+3(0.6)^2+3(0.6)^3+3(0.6)^4]=10.8336$ m
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$S_n=t_1+t_1+t_1+t_1+…$
$n=2implies t_1+t_1=2t_1$
$n=3implies t_1+t_1+t_1=3t_1$
$n=4implies t_1+t_1+t_1+t_1=4t_1$
Therefore, the sum of the first $n$ terms is $S_n=ncdot t_1$
S_n=ncdot t_1
$$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$S_{20}=1cdotdfrac{2^{20}-1}{2-1}=1;048;575$
Therefore, the $20^{th}$ stage must have $boxed{bold{1;048;575}}$ line segments.
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
Remember that the relationship between hypotenuse and leg is given by the Pythagorean relation
$(t_{n-1})^2=(t_n)^2+(t_n)^2implies (t_{n-1})^2=2(t_n)^2=t_n=dfrac{1}{sqrt{2}}cdot (t_{n-1})^{1/2}$
This is a recursive form of a geometric sequence with $r=dfrac{1}{sqrt{2}}$.
Since the length of initial square=1, we can write the length of square added in each stage $t_n$ as
$t_n=1cdot left(dfrac{1}{sqrt{2}}right)^{n-1}=(sqrt{0.5})^{n-1}$
We shall then express the area added in each stage for every square in the previous stage as a function of $n$.
Notice that in each stage, 2 squares are added with side $t_n$ and an isosceles right triangle with leg $t_n$.
Remember that
$A_{square}=(side)^2$ ; $A_{triangle}=dfrac{1}{2}(base)(height)$
Thus, the additional area in each stage for every square in the previous stage is the sum of the areas of two squares and one triangle which can be expressed as
$A_n=2(t_n)^2+dfrac{1}{2}(t_n)(t_n)=2.5t_n^2$
$A_n=2.5left((sqrt{0.5})^{n-1}right)^2=2.5cdot 0.5^{n-1}$
This corresponds to the area being added on the $n^{th}$ stage for every square added on the $(n-1)^{th}$ stage.
Now we want to know how many new squares are added in each stage. Observe that two squares are added for
every square in the previous stage, thus, it is a geometric sequence with $t_1=1$ and $r=2$
The number of squares added on the $n^{th}$ stage is
$S_n=1cdot 2^{n-1}=2^{n-1}$.
In this case, this is the product of $A_n$ and $S_{n-1}$
$T_{n}=A_ncdot S_{n-1}=(2.5cdot 0.5^{n-1})cdot 2^{n-2}=2.5cdot dfrac{2^{n-2}}{2^{n-1}}=2.5cdot 2^{-1}=1.25$
Thus, the area added in each stage is $1.25$ $m^2$ and is not a function of $n$.
The total area on the $n^{th}$ stage $Z_{n}$ is the sum of the area of the first square and the additional area resulting from the 9 remaining stages
$Z_n=1;m^2+(9 ;text{stages})(1.25; m^2; text{per stage})=12.25;m^2$
Therefore, at the $10^{th}$ stage, the total area is $boxed{bold{12.25;m^2}}$.
12.25;m^2
$$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
Using the formula for the sum of geometric series, we have
$S_{7}=5cdotdfrac{3^7-1}{3-1}=5;465$
Thus, there are $boxed{bold{5,465;employees}}$ in this company.
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
Therefore, if there are $10$ terms in the series, the sum is
$S_{10}=5;859;375dfrac{(3/5)^{10}-1}{(3/5)-1}=14;559;864$
14;559;864
$$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
(a) The total must not be more than $$2;000;000$
(b) The first term $t_1$ must be a positive integer
(c) If terms are arranged in increasing order, it must form a geometric series with $2<r<10$
$S_n=t_1cdot dfrac{r^n-1}{r-1}$
$$
2;000;000geq t_1cdot dfrac{r^{n}-1}{r-1}
$$
For instance, if $r=4$ and $n=6$, we can find $t_1$ as
$t_1leq dfrac{2;000;000}{dfrac{4^6-1}{4-1}}$
$$
t_1 leq 1465.20
$$
$S_n=dfrac{n}{2}(t_1+t_n)$
(1) The difference in consecutive terms is constant
(2) If we write the terms in forward and reverse order, the sum of corresponding pairs is constant.
$S_n=dfrac{t_{n+1}-t_1}{r-1}, rneq 1$
(1) The ratio between consecutive terms is constant.
(2) If we write the terms in forward and reverse order, the product of corresponding pairs is constant.
begin{tabular}{|l|l|l|l|l|l|}
hline
forward & 2 & 4 & 6 & 8 & 10 \ hline
reverse & 10 & 8 & 6 & 4 & 2 \ hline
sum & 12 & 12 & 12 & 12 & 12 \ hline
end{tabular}
end{table}
begin{tabular}{|l|l|l|l|l|l|}
hline
forward & 2 & 4 & 8 & 16 & 32 \ hline
reverse & 32 & 16 & 8 & 4 & 2 \ hline
product & 64 & 64 & 64 & 64 & 64 \ hline
end{tabular}
end{table}
(1) Both equations contains first term and another term at a particular $n$.
(2) Both equations involve division operation.
(1) The denominator in arithmetic series is $2$ while for geometric is $r-1$.
(2) The arithmetic series formula involves addition operation while that of geometric series involves substraction.
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$372=12cdot dfrac{r^3-1}{r-1}$
$31=dfrac{r^3-1}{r-1}$
$31(r-1)=r^3-1$
Remember the factor for the difference of two cubes
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$31(r-1)=(r-1)(r^2+r+1^2)implies r=1$
$31=r^2+r+1$
$r^2+r-30=0$
Solve this quadratic equation by factoring
$(r+6)(r-5)=0$
$r=-6$ or $r=5$ or $r=1$.
We will see which value of $r$ would maximize $t_5$.
$r=-6implies t_5=12(-6)^{5-1}=15;552$
$r=5implies 12(5)^{5-1}=7500$
$r=1implies 12cdot (5)^{1-1}=12$
Therefore, the maximum possible value of the fifth term is $boxed{bold{15;552}}$
15;552
$$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$$
92=23cdot r^{3-1}implies r^2=dfrac{92}{23}implies r^2=4implies r=pm sqrt{2}
$$
Case 1: $r=2$
62 813 = $23cdot dfrac{(2)^n-1}{(2)-1}$
$$
2731=dfrac{(2)^n-1}{2-1}implies 2^n=2732
$$
Remember that $n$ should take discrete integer value and $2^{10}=1024$ and $2^{11}=2048$. Thus, no value of $n$ can satisfy this.
Case 2: $r=-2$
$62;813=23cdot dfrac{(-2)^n-1}{(-2)-1}$
$-8193=(-2)^{n}-1implies (-2)^n=-8192$
$n=13$
Hence $r=-2$ and there are $boxed{bold{13}}$ terms in the series.
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
$1+x+x^2+…+x^{14}$
The first term is $t_1=1$ and common ratio $r=x$.
The sum of the 15 terms is
$S_{15}=1+x+x^2+…+x^{14}=1cdot dfrac{x^{15}-1}{x-1}$
Therefore
$x^{15}-1=(x-1)(1+x+x^2+…+x^{14})$
x^{15}-1=(x-1)(1+x+x^2+…+x^{14})
$$
$t_n=t_1cdot r^{n-1}$
$bold{Sum;of;Geometric;Series:}$ The sum of first $n$ terms in a geometric series with first term $t_1$ and common ratio $r$ is
$$
S_n=t_1cdot dfrac{r^n-1}{r-1}
$$
We shall use the formula for the sum of geometric series as
$$
S_n=0.5cdot dfrac{0.5^n-1}{0.5-1}=-(0.5^n-1)=1-0.5^n
$$
$n=2implies S_n=1-(0.5)^2=0.75$
$n=5implies S_n=1-(0.5)^5=0.9922$
$n=20implies S_n=1-(0.5)^{20}=0.99999$
From the obtained expression for $S_n$, notice that as $n$ increases, $S_n$ approaches $1$. We would expect that the sum of this infinite series is 1.
b.) $S_n=1-0.5^n$
c.) $S_{infty}=1$