Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 78: Chapter Self-Test

Exercise 1
Step 1
1 of 3
a) Each element of the domain has only one
corresponding element in the range, so the relation
is a function.

Domain=$left{ -5,-2,0,3right}$

Range=$left{-1, 1,7 right}$.

Answer is: $text{textcolor{#4257b2}{relation is a function}}$.

Step 2
2 of 3
b) Each element of the domain has only one corresponding element in the range, so the relation is a function.

If we want to find a domain, we put the expression inside the square root greater than or equal to zero and solve the inequality:

$$
begin{align*}
x+2&geq0\
x&geq-2\
end{align*}
$$

So, Domain $=left{xin R| xgeq -2 right}$

Range is a set of all reall positive number

Range=$left{ yin R| ygeq0right}$

Answer is: $text{textcolor{#4257b2}{relation is a function}}$

Result
3 of 3
a) Relation is a function

b) Relation is a function.

Exercise 2
Step 1
1 of 5
Let $x$ be the number of hours. The cost function is the sum of the initial cost and time-dependent operating cost.

a) incandescent bulb: $f(x)=0.65+0.004x$

fluorescent bulb: $g(x)=3.50+0.001x$

Step 2
2 of 5
b) The number of hours can’t be negative so the domain for both functions is:

domain = ${ xinbold{R};|;xgeq 0}$

The cost does not have upper limit but it cannot be less than the initial cost (greater than or equal to the initial cost)

$f(x)$: range = ${ yinbold{R};|;ygeq 0.65}$

$g(x)$: range = ${ yinbold{R};|;ygeq 3.50}$

Step 3
3 of 5
c) The fluorescent bulb is cheaper if $g(x)<f(x)$

$3.50+0.001x< 0.65+0.004x$

$0.001x-0.004x<0.65-3.50$

$-0.003xdfrac{2.85}{0.003}implies x>950$

Thus, the fluorescent is cheaper after 950 hours.

Step 4
4 of 5
d) There are 365 days in a year and the bulb runs 6 hours a day.

running hours per year = 365$times 6=2190$

incandescent: $f(2190)=0.65+0.004(2190)=$9.41$

fluorescent: $g(2190)=3.50+0.001(2190)=$5.69$

Cost difference = $9.41-5.69=3.72$

Therefore, after one year, the fluorescent lamp is cheaper than incandescent lamp by $$3.72$

Result
5 of 5
a) $f(x)=0.004x+0.65$ ; $g(x)=0.001x+3.50$

b) f: domain = ${ xinbold{R};|;xgeq 0}$ , range = ${ yinbold{R};|;ygeq 0.65}$

g: domain = ${ xinbold{R};|;xgeq 0}$ , range = ${ yinbold{R};|;ygeq 3.50}$

c) 950 hours

d) Fluorescent lamp is $$3.72$ cheaper than incandescent lamp after one year.

Exercise 3
Step 1
1 of 4
a) Function is $f(x)=dfrac{1}{x-2}$

$f(x)$ can take real values if the denominator of $f(x)$ is not zero because division by zero is not allowed in mathematics:

$xne2$

Solve the above inequality for to obtain the domain: $x ≠ 2$

So,$text{textcolor{#4257b2}{ Domain= $left{xin R | xne2 right}$}}$

The range of the function is same as the domain of the inverse function. So, to find the range determine the inverse of the function.

Interchange the $x$ and $y$ :

$x=dfrac{1}{y-2}$

Solving for $y$ we get:

$$
begin{align*}
x=&dfrac{1}{y-2}\
y-2=dfrac{1}{x}\
y=dfrac{1}{x}+2\
end{align*}
$$

So, the inverse function is $f^{-1}(x)=dfrac{1}{x}+2$

The excluded value in the domain of the inverse function can be determined byequating the denominator to zero. So, the domain of the inverse function is the set of real numbers except 0 .

$text{textcolor{#4257b2}{Range$=left{yin R | yne0 right}$ }}$.

Step 2
2 of 4
b) Function is $f(x)=sqrt{3-x}-4$

If we want to find domain we put the expression inside the square root greater than or equal to zero and solve this inequality:

$$
begin{align*}\
&3-xgeq0\
-xgeq-3\
xleq-3\
end{align*}
$$

$text{textcolor{#4257b2}{Domain=$left{ xin R | xleq -3right}$}}$

Now, we need find range of the function:

The range of values of $sqrt{3-x}$ may be written as an inequality:

$sqrt{3-x}geq0$

Then, subtract 4 from both sides of the above inequality to obtain:

$sqrt{3-x}-4leq-4$

The range of values of the expression on the left side of the inequality, which is also the range of the given function, is given by the interval $(-infty, -4]$. So,

$$
text{textcolor{#4257b2}{Range=$left{ yin R | yleq-4right}$}}
$$

Step 3
3 of 4
c) Function is $f(x)=-|x+1|+3$

Domain of this function is the set of all real numbers.

$$
text{textcolor{#4257b2}{Domain=$left{xin R right}$}}
$$

The range of values of $|x+1|$ may be written as an inequality:

$|x+1|geq0$

Multiply both sides by $-1$ of the above inequality to obtain:

$-|x+1|leq0$

Then,add 3 to both sides of the above inequality to obtain:

$-|x+1|+3leq3$

This means, $text{textcolor{#4257b2}{Range=$left{yin R | yleq-3right}$}}$

Result
4 of 4
a) Domain$=left{ x in R | xne2right}$ , Range$=left{yin R | yne0 right}$

b) Domain$=left{ x in R | xleq-3right}$ , Range$=left{yin R | yleq-4 right}$

c) Domain$=left{xin R right}$ , Range$=left{yin R | yleq-3 right}$

Exercise 4
Step 1
1 of 1
An inverse function undoes the action of the original function. The domain and range of the inverse function or swapped from that of the original function. Thus the domain for one is the range of the other while the range of one function is the domain of the other function
Exercise 5
Step 1
1 of 3
a) We are given the following function:$text{textcolor{#4257b2}{ $left{ (-2,3), (0,5), (2,6), (4,8)right}$ }}$

The inverse function we can determine if we switch the $x$ and $y$ coordinates of each point.

$text{textcolor{#c34632}{Inverse function is $left{(3,-2), (5,0), (6,2), (8,4) right}$}}$

We know, the domain is all the $x$-values, and the range is all the $y$-values. Use that, we get:

$text{textcolor{#4257b2}{Function}}$: Domain$=left{-2,0,2,4 right}$, Range$=left{ 3,5,6,8right}$

$text{textcolor{#c34632}{Inverse function}}$: Domain$=left{3,5,6,8 right}$, Range$=left{ -2,0,2,4right}$

see graph: the points on one side of the line were mirror images of the points on the other side. The blue points is a points of a given function, and the red points is a points of the its inverse.Exercise scan
Step 2
2 of 3
b) We are given the following function:$text{textcolor{#4257b2}{ $f(x)=3-4x$}}$

This is a linear function.

Now determine the inverse of the function.

Interchange the $x$ and $y$ :

$x=3-4x$

Solving for $y$ we get:

$$
begin{align*}
x&=3-4y\
x-3&=-4y tag{text{subtract 3 from both sides}}\
dfrac{x-3}{-4}&=y tag{text{divide both sides by -4}}\
y&=dfrac{3-x}{4} tag{text{simplify}}\
end{align*}
$$

So, the inverse function is $text{textcolor{#c34632}{ $f^{-1}(x)=dfrac{3-x}{4}$}}$

$text{textcolor{#4257b2}{Function}}$: Domain$=left{xin R right}$, Range$=left{ yin Rright}$

$text{textcolor{#c34632}{Inverse function}}$: Domain$=left{xin R right}$, Range$=left{ yin Rright}$.

see graph:Exercise scan
Result
3 of 3
a) Inverse function is: $left{(3,-2), (5,0), (6,2), (8,4) right}$

b) Inverse function is: $f^{-1}(x)=dfrac{3-x}{4}$

check for answers

Exercise 6
Step 1
1 of 4
a) Rebecca receives a guaranteed $$1500$ and additional $4%$ commission if her sales exceed $$2500$. If $x$ is her sales and $f(x)$ is the monthly income, then

b) $f(x) = 1500+0.04(x-2500)$ for $xgeq 2500$

Exercise scan

Step 2
2 of 4
c,d) We shall find the inverse of $f(x)$ by swapping the positions of the variables then solving for $y$

The domain of the inverse is the range of the original function which is $ygeq 1500$

$y=1500+0.04(x-2500)$

$x=1500+0.04(y-2500)$

$y-2500=dfrac{x-1500}{0.04}$

$y=25(x-1500)+2500$

$f^{-1}(x)=25(x-1500)+2500$ ; $xgeq 1500$

Exercise scan

Step 3
3 of 4
e) This is finding the value of $x$ when $f(x)=1740$ which is the same as the value of the inverse function evaluated at $x=1740$.

$$
f^{-1}(1740)=25(1740-1500)+2500=$8500
$$

Result
4 of 4
a) The graph has been plotted in the answers.

b) $f(x)=0.04(x-2500)+1500$ for $xgeq 2500$

c) The graph has been plotted in the answers.

d) $f^{-1}(x)=25(x-1500)+2500$ for $xgeq 1500$

e) $f^{-1}(x)(1740)=25(1740-1500)+2500=$8500$

Exercise 7
Step 1
1 of 3
a) If a function $f(x)$ horizontally stretched by a factor $5$ to $f(kx)$, then, $k=dfrac{1}{5}.$
Step 2
2 of 3
b) If a function $f(x)$ a horizontally compressed by the factor $dfrac{1}{3}$ and a reflected in the $y$-axis to $f(kx)$, then $k=-3$.
Result
3 of 3
a) $k=dfrac{1}{5}$

b) $k=-3$.

Exercise 8
Step 1
1 of 4
a) The function $f(x)=sqrt{x}$ has been transformed to $y=af[k(x-d)]+c$

The first, we need determine $a, k, c$ and $d$.

The graph of $f(x)=sqrt{x}$ is vertically compressed by the factor $dfrac{1}{2}$ $longrightarrow$ $y=dfrac{1}{2}sqrt{x}$

then reflected in the $y$-axis $longrightarrow$ $y=dfrac{1}{2}sqrt{-x}$

and then translated 2 units right $longrightarrow$ $y=dfrac{1}{2}sqrt{-(x-2)}=$

Use these steps, we get new function:

$color{#4257b2}{y=dfrac{1}{2}sqrt{-(x-2)}=dfrac{1}{2}f(-(x-2))}$

If we compare this function with $y=af[k(x-d)]+c$, we can conclude that:

$a=dfrac{1}{2}, k=-1, c=0, d=2$

We can identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the $x$-axis. The range is the set of possible output values, which are shown on the $y$-axis.

$text{textcolor{#4257b2}{Domain$=left{xin R | xleq2 right}$}}$

$text{textcolor{#4257b2}{Range$=left{yin R | ygeq0 right}$}}$

see graph:Exercise scan
Step 2
2 of 4
b) The function $f(x)=dfrac{1}{x}$ has been transformed to $y=af[k(x-d)]+c$

The first, we need determine $a, k, c$ and $d$.

The graph of $f(x)=dfrac{1}{x}$ is stretched vertically by the factor $longrightarrow$ $y=dfrac{4}{x}$

then reflected in the $x$-axis $longrightarrow$ $y=dfrac{-4}{x}$

then translated 2 units left $longrightarrow$ $y=dfrac{-4}{x+2}$

and then translated 3 units down $longrightarrow$ $y=dfrac{-4}{x+2}-3$

Use these steps, we get new function:

$color{#4257b2}{y=dfrac{-4}{x+2}-3=-4f(x+2)-3}$

If we compare this function with $y=af[k(x-d)]+c$, we can conclude that:

$a=-4, k=1, c=-3, d=-2$

$text{textcolor{#4257b2}{Domain$=left{xin R | xne0 right}$}}$

$text{textcolor{#4257b2}{Range$=left{yin R | yne-2 right}$}}$

see graph:Exercise scan
Step 3
3 of 4
c) The function $f(x)=|x|$ has been transformed to $y=af[k(x-d)]+c$

The first, we need determine $a, k, c$ and $d$.

The graph of $f(x)=|x|$ is horizontally compressed by the factor $dfrac{1}{4}$ $longrightarrow$ $y=|4x|$

then, stretched vertically by the factor $dfrac{3}{2}$ $longrightarrow$ $y=dfrac{3}{2}|4x|$

then reflected in the $x$-axis $longrightarrow$ $y=-dfrac{3}{2}|4x|$

and then translated 3 units right $longrightarrow$ $y=-dfrac{3}{2}|4(x-3)|$

and then translated 2 units down $longrightarrow$ $y=-dfrac{3}{2}|4(x-3)|-2$

Use these steps, we get new function:

$color{#4257b2}{y=-dfrac{3}{2}|4(x-3)|-2=-dfrac{3}{2}f(4(x-3))-2}$

If we compare this function with $y=af[k(x-d)]+c$, we can conclude that:

$a=-dfrac{3}{2}, k=4, c=-2, d=3$

We can identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the $x$-axis. The range is the set of possible output values, which are shown on the $y$-axis.

$text{textcolor{#4257b2}{Domain$=left{xin R right}$}}$

$text{textcolor{#4257b2}{Range$=left{yin R | yleq-2 right}$}}$

see graph:Exercise scan
Result
4 of 4
Functions are:

a) $dfrac{1}{2}f(-(x-2))$

b) $y=-4f(x+2)-3$

c) $y=-dfrac{3}{2}f(4(x-3))-2$

Check the answers.

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New