Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Section 2-6: Multiplying and Dividing Rational Expressions

Exercise 1
Step 1
1 of 6
In the following exercises involving multiplication or division of rational numbers, remember the following algebraic rules:

$$
begin{equation*} dfrac{a}{b}times dfrac{c}{d}=dfrac{ac}{bd} end{equation*}
$$

$$
begin{equation*}dfrac{a}{b}div dfrac{c}{d}=dfrac{a}{b}times dfrac{d}{c}=dfrac{ad}{bc} end{equation*}
$$

$$
begin{equation*}dfrac{ab}{ac}=dfrac{b}{c}end{equation*}
$$

$$
begin{equation*}x^atimes x^b=x^{a+b}end{equation*}
$$

$$
begin{equation*} dfrac{x^a}{x^b}=x^{a-b} end{equation*}
$$

The values of variables that would make the denominator zero in the original expression are the restrictions on the variable of the simplified expression.

Step 2
2 of 6
$$
begin{align*}
bold{a);;} dfrac{2}{3}times dfrac{5}{8} &=dfrac{(2)(5)}{(3)(8)}\\ &=dfrac{10}{24}\\ &=dfrac{5(2)}{12(2)}\\ &=dfrac{5}{12}end{align*}
$$
Step 3
3 of 6
$$
begin{align*}
bold{b);;} dfrac{6x^2y}{5y^3}times dfrac{xy}{8}&=dfrac{(6x^2y)(xy)}{(5y^3)(8)}\\&=dfrac{6x^3y^2}{40y^3}\\&=dfrac{6x^3y^{2-3}}{40}\\&=dfrac{6x^3}{40y}\\&=dfrac{(2)(3)x^3}{2(20)y}\\&=dfrac{3x^3}{20y};; ;;; y neq 0
end{align*}
$$
Step 4
4 of 6
$$
begin{align*}
bold{c);;} frac{(x+1)(x-5)}{(x+4)}times frac{(x+4)}{2(x-5)} &= dfrac{(x+1)(x-5)(x+4)}{(x+4)(2)(x-5)}\\
&=dfrac{(x+1)cancel{(x-5)}cancel{(x+4)}}{cancel{(x+4)}(2)cancel{(x-5)}}\\&=dfrac{x+1}{2}; ;;xneq -4,;5end{align*}
$$
Step 5
5 of 6
$$
begin{align*}
bold{d);;} frac{x^2}{2x+1}timesfrac{6x+3}{5x}&=frac{(x^2(6x+3)}{(2x+1)(5x)} \\
&=frac{x^2(3)(2x+1)}{(2x+1)(5x)}\\&=frac{x^2(3)cancel{(2x+1)}}{cancel{(2x+1)}(5x)}\\&=frac{3x^2}{5x}\\&=frac{3x^{2-1}}{5}\\&=frac{3x}{5} ;; ; ;; xneq -frac{1}{2}, ;0 end{align*}
$$
Result
6 of 6
a) $dfrac{5}{12}$

b) $dfrac{3x^3}{20y}$ ; $yneq 0$

c) $dfrac{x+1}{2}$ , $xneq -4,;5$

d) $dfrac{3x}{5}$ , $xneq -dfrac{1}{2},;0$

Exercise 2
Step 1
1 of 6
In the following exercises involving multiplication or division of rational numbers, remember the following algebraic rules:

$$
begin{equation*} dfrac{a}{b}times dfrac{c}{d}=dfrac{ac}{bd} end{equation*}
$$

$$
begin{equation*}dfrac{a}{b}div dfrac{c}{d}=dfrac{a}{b}times dfrac{d}{c}=dfrac{ad}{bc} end{equation*}
$$

$$
begin{equation*}dfrac{ab}{ac}=dfrac{b}{c}end{equation*}
$$

$$
begin{equation*}x^atimes x^b=x^{a+b}end{equation*}
$$

$$
begin{equation*} dfrac{x^a}{x^b}=x^{a-b} end{equation*}
$$

The values of variables that would make the denominator zero in the original expression are the restrictions on the variable of the simplified expression.

Step 2
2 of 6
$$
begin{align*}
bold{a);;} dfrac{2x}{3}div dfrac{x^2}{5} &= dfrac{2x}{3}times dfrac{5}{x^2} \\
&= dfrac{(2x)(5)}{3(x^2)}\\
&=dfrac{10x}{3x^2}\\
&=dfrac{10x^{1-2}}{3}\\
&=dfrac{10x^{-1}}{3}\\
&=dfrac{10}{3x} ;; ; ;; xneq 0
end{align*}
$$
Step 3
3 of 6
$$
begin{align*}
bold{b);;;} frac{x-7}{10}divdfrac{2x-14}{25} &= dfrac{x-7}{10}timesdfrac{25}{2x-14} \\
&=dfrac{(x-7)(25)}{10(2x-14)}\\ &=frac{(x-7)(25)}{10(2)(x-7)}\\ &=frac{cancel{(x-7)}(25)}{10(2)cancel{(x-7)}}\
&=frac{25}{20}\\ &=frac{5(5)}{5(4)} \\&=frac{5}{4} ;; ;;; xneq 7
end{align*}
$$
Step 4
4 of 6
$$
begin{align*}
bold{c);;} dfrac{3x(x-6)}{(x+2)(x-7)}div dfrac{x-6}{x+2} &=frac{3x(x-6)}{(x+2)(x-7)}times frac{(x+2)}{(x-6)} \\
&=dfrac{3x(x-6)(x+2)}{(x+2)(x-7)(x-6)}\\&=dfrac{3xcancel{(x-6)}cancel{(x+2)}}{cancel{(x+2)}(x-7)cancel{(x-6)}}\\
&=dfrac{3x}{x-7} ;; ; ;; xneq -2,7,6end{align*}
$$
Step 5
5 of 6
$$
begin{align*}
bold{d);;} dfrac{x^2-1}{x-1}div dfrac{x+1}{12-6x}&=dfrac{x^2-1}{x-2}times dfrac{12-6x}{x+1} \\
&=dfrac{(x^2-1)(12-6x)}{(x-2)(x+1)}\\ &=dfrac{(x+1)(x-1)(6)(2-x)}{(x-2)(x+1)}\\ &=dfrac{cancel{(x+1)}(x-1)(6)(2-x)}{(x-2)cancel{(x+1)}}\\&=dfrac{(x-1)(6)(2-x)}{x-2}\\&=dfrac{(x-1)(-6)(x-2)}{x-2}\\&=dfrac{(x-1)(-6)cancel{(x-2)}}{cancel{(x-2)}}\\&=(-6)(x-1)\\&=6(1-x) ;; ; ;; xneq 2,;-1 end{align*}
$$
Result
6 of 6
a) $dfrac{10}{3x}$ , $xneq 0$

b) $dfrac{5}{4}$ , $xneq 7$

c) $dfrac{3x}{x-7}$ , $xneq -2, 6,7$

d) $6(1-x)$ ; $xneq 2,-1$

Exercise 3
Step 1
1 of 3
a) The factored form of the given expression, $dfrac{(x+1)^2}{x^2+2x-3}timesdfrac{(x-1)^2}{x^2+4x+3}
,$ is

$$
begin{align*}
&
dfrac{(x+1)(x+1)}{(x+3)(x-1)}cdotdfrac{(x-1)(x-1)}{(x+3)(x+1)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&dfrac{(cancel{x+1})(x+1)}{(x+3)(cancel{x-1})}cdotdfrac{(cancel{x-1})(x-1)}{(x+3)(cancel{x+1})}
\\&=
dfrac{(x+1)(x-1)}{(x+3)(x+3)}
\\&=
dfrac{x^2-1}{x^2+6x+9}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x^2-1}{x^2+6x+9}
text{, }xne{-3,-1,1,3}
.$

Step 2
2 of 3
b) The factored form of the given expression, $dfrac{2x+10}{x^2-4x+4}divdfrac{x^2-25}{x-2}
,$ is

$$
begin{align*}
&
dfrac{2x+10}{x^2-4x+4}cdotdfrac{x-2}{x^2-25}
\\&=
dfrac{2(x+5)}{(x-2)(x-2)}cdotdfrac{x-2}{(x-5)(x+5)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{x+5})}{(cancel{x-2})(x-2)}cdotdfrac{cancel{x-2}}{(x-5)(cancel{x+5})}
\\&=
dfrac{2}{(x-2)(x-5)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2}{(x-2)(x-5)}
text{, }xne{ -5,2,5}
.$

Result
3 of 3
a) $dfrac{x^2-1}{x^2+6x+9}
text{, }xne{-3,-1,1,3}$

b) $dfrac{2}{(x-2)(x-5)}
text{, }xne{ -5,2,5}$

Exercise 4
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{2x^2}{7}timesdfrac{21}{x}
,$ is

$$
begin{align*}
&
dfrac{2xcdot x}{7}timesdfrac{3cdot7}{x}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2xcdot cancel{x}}{cancel7}timesdfrac{3cdotcancel7}{cancel{x}}
\\&=
6x
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $6x
text{, }xne0
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{7a}{3}divdfrac{14a^2}{5}
,$ is

$$
begin{align*}
&
dfrac{7a}{3}cdotdfrac{5}{14a^2}
\\&=
dfrac{7a}{3}cdotdfrac{5}{7acdot2a}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{7a}}{3}cdotdfrac{5}{cancel{7a}cdot2a}
\\&=
dfrac{5}{6a}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{5}{6a}
text{, }ane0
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2x^3y}{3xy^2}timesdfrac{9x}{4x^2y}
,$ is

$$
begin{align*}
&
dfrac{2x^2ycdot x}{3xcdot y^2}timesdfrac{3xcdot3}{2x^2ycdot2}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{2x^2y}cdot x}{cancel{3x}cdot y^2}timesdfrac{cancel{3x}cdot3}{cancel{2x^2y}cdot2}
\\&=
dfrac{3x}{2y^2}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{3x}{2y^2}
text{, }xne0text{, }yne0
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{3a^2b^3}{2ab^2}divdfrac{9a^2b}{14a^2}
,$ is

$$
begin{align*}
&
dfrac{3a^2b^3}{2ab^2}cdotdfrac{14a^2}{9a^2b}
\\&=
dfrac{3a^2bcdot b^2}{2acdot b^2}cdotdfrac{2acdot7a}{3a^2bcdot3}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{3a^2b}cdot cancel{b^2}}{cancel{2a}cdot cancel{b^2}}cdotdfrac{cancel{2a}cdot7a}{cancel{3a^2b}cdot3}
\\&=
dfrac{7a}{3}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{7a}{3}
text{, }ane0text{, }bne0
.$

Result
5 of 5
a) $6x
text{, }xne0$

b) $dfrac{5}{6a}
text{, }ane0$

c) $dfrac{3x}{2y^2}
text{, }xne0text{, }yne0$

d) $dfrac{7a}{3}
text{, }ane0text{, }bne0$

Exercise 5
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{2(x+1)}{3}timesdfrac{x-1}{6(x+1)}
,$ is

$$
begin{align*}
&
dfrac{2(x+1)}{3}cdotdfrac{x-1}{2(x+1)cdot3}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{2(x+1)}}{3}cdotdfrac{x-1}{cancel{2(x+1)}cdot3}
\\&=
dfrac{x-1}{9}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x-1}{9}
text{, }xne-1
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{3a-6}{a+2}divdfrac{a-2}{a+2}
,$ is

$$
begin{align*}
&
dfrac{3a-6}{a+2}cdotdfrac{a+2}{a-2}
\\&=
dfrac{3(a-2)}{a+2}cdotdfrac{a+2}{a-2}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{3(cancel{a-2})}{cancel{a+2}}cdotdfrac{cancel{a+2}}{cancel{a-2}}
\\&=
3
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $3
text{, }ane{ -2,2 }
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2(x-2)}{9x^3}timesdfrac{12x^4}{2-x}
,$ is

$$
begin{align*}
&
dfrac{2(x-2)}{3x^3cdot3}cdotdfrac{3x^3cdot4x}{-1(x-2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{x-2})}{cancel{3x^3}cdot3}cdotdfrac{cancel{3x^3}cdot4x}{-1(cancel{x-2})}
\\&=
dfrac{8x}{-3}
\\&=
-dfrac{8x}{3}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $-dfrac{8x}{3}
text{, }xne{ 0,2 }
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{3(m+4)^2}{2m+1}divdfrac{5(m+4)}{7m+14}
,$ is

$$
begin{align*}
&
dfrac{3(m+4)^2}{2m+1}cdotdfrac{7m+14}{5(m+4)}
\\&=
dfrac{3(m+4)(m+4)}{2m+1}cdotdfrac{7(m+2)}{5(m+4)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{3(m+4)(cancel{m+4})}{2m+1}cdotdfrac{7(m+2)}{5(cancel{m+4})}
\\&=
dfrac{3(m+4)(7)(m+2)}{5(2m+1)}
\\&=
dfrac{21(m+4)(m+2)}{5(2m+1)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{21(m+4)(m+2)}{5(2m+1)}
text{, }mneleft{ -4,-2,-dfrac{1}{2} right}
.$

Result
5 of 5
a) $dfrac{x-1}{9}
text{, }xne-1$

b) $3
text{, }ane{ -2,2 }$

c) $-dfrac{8x}{3}
text{, }xne{ 0,2 }$

d) $dfrac{21(m+4)(m+2)}{5(2m+1)}
text{, }mneleft{ -4,-2,-dfrac{1}{2} right}$

Exercise 6
Step 1
1 of 5
a) Cancelling the common factors between the numerator and the denominator, the given expression, $dfrac{(x+1)(x-3)}{(x+2)^2}timesdfrac{2(x+2)}{(x-3)(x+3)}
,$ is equivalent to

$$
begin{align*}
&
dfrac{(x+1)(cancel{x-3})}{(x+2)^{cancel21}}timesdfrac{2(cancel{x+2})}{(cancel{x-3})(x+3)}
\\&=
dfrac{2(x+1)}{(x+2)(x+3)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2(x+1)}{(x+2)(x+3)}
text{, }xne{ -3,-2,3}
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{2(n^2-7n+12)}{n^2-n-6}divdfrac{5(n-4)}{n^2-4}
,$ is

$$
begin{align*}
&
dfrac{2(n^2-7n+12)}{n^2-n-6}cdotdfrac{n^2-4}{5(n-4)}
\\&=
dfrac{2(n-3)(n-4)}{(n-3)(n+2)}cdotdfrac{(n+2)(n-2)}{5(n-4)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{n-3})(cancel{n-4})}{(cancel{n-3})(cancel{n+2})}cdotdfrac{(cancel{n+2})(n-2)}{5(cancel{n-4})}
\\&=
dfrac{2(n-2)}{5}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2(n-2)}{5}
text{, }nneleft{ -2,2,3,4 right}
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2x^2-x-1}{x^2-x-6}timesdfrac{6x^2-5x+1}{8x^2+14x+5}
,$ is

$$
begin{align*}
&
dfrac{(2x+1)(x-1)}{(x-3)(x+2)}timesdfrac{(6x+1)(x-1)}{(4x+5)(2x+1)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{2x+1})(x-1)}{(x-3)(x+2)}timesdfrac{(6x+1)(x-1)}{(4x+5)(cancel{2x+1})}
\\&=
dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
text{, }xneleft{ -dfrac{5}{4},-2,-dfrac{1}{2},3 right}
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{9y^2-4}{4y-12}divdfrac{9y^2+12y+4}{18-6y}
,$ is

$$
begin{align*}
&
dfrac{9y^2-4}{4y-12}cdotdfrac{18-6y}{9y^2+12y+4}
\\&=
dfrac{(3y+2)(3y-2)}{4(y-3)}cdotdfrac{6(3-y)}{(3y+2)(3y+2)}
\\&=
dfrac{(3y+2)(3y-2)}{4(y-3)}cdotdfrac{-6(y-3)}{(3y+2)(3y+2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{3y+2})(3y-2)}{cancel2cdot2(cancel{y-3})}cdotdfrac{cancel2cdot(-3)(cancel{y-3})}{(cancel{3y+2})(3y+2)}
\\&=
dfrac{-3(3y-2)}{2(3y+2)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{-3(3y-2)}{2(3y+2)}
text{, }yneleft{ -dfrac{2}{3}, 3 right}
.$

Result
5 of 5
a) $dfrac{2(x+1)}{(x+2)(x+3)}
text{, }xne{ -3,-2,3}$

b) $dfrac{2(n-2)}{5}
text{, }nneleft{ -2,2,3,4 right}$

c) $dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
text{, }xneleft{ -dfrac{5}{4},-2,-dfrac{1}{2},3 right}$

d) $dfrac{-3(3y-2)}{2(3y+2)}
text{, }yneleft{ -dfrac{2}{3}, 3 right}$

Exercise 7
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{x^2-5xy+4y^2}{x^2+3xy-28y^2}timesdfrac{x^2+2xy+y^2}{x^2-y^2}
,$ is

$$
begin{align*}
&
dfrac{(x-4y)(x-y)}{(x+7y)(x-4y)}cdotdfrac{(x+y)(x+y)}{(x+y)(x-y)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{x-4y})(cancel{x-y})}{(x+7y)(cancel{x-4y})}cdotdfrac{(cancel{x+y})(x+y)}{(cancel{x+y})(cancel{x-y})}
\\&=
dfrac{x+y}{x+7y}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x+y}{x+7y}
text{, }xne-7ytext{, }xne4ytext{, }xne ytext{, }xne-y
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{2a^2-12ab+18b^2}{a^2-7ab+10b^2}divdfrac{4a^2-12ab}{a^2-7ab+10b^2}
,$ is

$$
begin{align*}
&
dfrac{2a^2-12ab+18b^2}{a^2-7ab+10b^2}cdotdfrac{a^2-7ab+10b^2}{4a^2-12ab}
\\&=
dfrac{2(a^2-6ab+9b^2)}{(a-5b)(a-2b)}cdotdfrac{(a-2b)(a-5b)}{4a(a-3b)}
\\&=
dfrac{2(a-3b)(a-3b)}{(a-5b)(a-2b)}cdotdfrac{(a-2b)(a-5b)}{4a(a-3b)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel2(cancel{a-3b})(a-3b)}{cancel{(a-5b)(a-2b)}}cdotdfrac{cancel{(a-5b)(a-2b)}}{cancel2cdot2a(cancel{a-3b})}
\\&=
dfrac{a-3b}{2a}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{a-3b}{2a}
text{, }ane0text{, }ane5btext{, }ane2btext{, }ane3b
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{10x^2+3xy-y^2}{9x^2-y^2}divdfrac{6x^2+3xy}{12x+4y}
,$ is

$$
begin{align*}
&
dfrac{10x^2+3xy-y^2}{9x^2-y^2}cdotdfrac{12x+4y}{6x^2+3xy}
\\&=
dfrac{(5x-y)(2x+y)}{(3x+y)(3x-y)}cdotdfrac{4(3x+y)}{3x(2x+y)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(5x-y)(cancel{2x+y})}{(cancel{3x+y})(3x-y)}cdotdfrac{4(cancel{3x+y})}{3x(cancel{2x+y})}
\\&=
dfrac{4(5x-y)}{3x(3x-y)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{4(5x-y)}{3x(3x-y)}
text{, }xneleft{ -dfrac{y}{2},-dfrac{y}{3}, 0,dfrac{y}{3} right}
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{15m^2+mn-2n^2}{2n-14m}timesdfrac{7m^2-8mn+n^2}{5m^2+7mn+2n^2}
,$ is

$$
begin{align*}
&
dfrac{(3m-n)(5m+2n)}{2(n-7m)}timesdfrac{(7m-n)(m-n)}{(5m+2n)(m+n)}
\\&=
dfrac{(3m-n)(5m+2n)}{-2(7m-n)}timesdfrac{(7m-n)(m-n)}{(5m+2n)(m+n)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(3m-n)(cancel{5m+2n})}{-2(cancel{7m-n})}timesdfrac{(cancel{7m-n})(m-n)}{(cancel{5m+2n})(m+n)}
\\&=
dfrac{(3m-n)(m-n)}{-2(m+n)}
\\&=
-dfrac{(3m-n)(m-n)}{2(m+n)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $-dfrac{(3m-n)(m-n)}{2(m+n)}
text{, }mneleft{ -dfrac{2n}{5},-n,dfrac{n}{7} right}
.$

Result
5 of 5
a) $dfrac{x+y}{x+7y}
text{, }xne-7ytext{, }xne4ytext{, }xne ytext{, }xne-y$

b) $dfrac{a-3b}{2a}
text{, }ane0text{, }ane5btext{, }ane2btext{, }ane3b$

c) $dfrac{4(5x-y)}{3x(3x-y)}
text{, }xneleft{ -dfrac{y}{2},-dfrac{y}{3}, 0,dfrac{y}{3} right}$

d) $-dfrac{(3m-n)(m-n)}{2(m+n)}
text{, }mneleft{ -dfrac{2n}{5},-n,dfrac{n}{7} right}$

Exercise 8
Step 1
1 of 2
The factored form of the given expression, $dfrac{x^2+x-6}{(2x-1)^2}timesdfrac{x(2x-1)^2}{x^2+2x-3}divdfrac{x^2-4}{3x}
,$ is

$$
begin{align*}
&
dfrac{x^2+x-6}{(2x-1)^2}timesdfrac{x(2x-1)^2}{x^2+2x-3}cdotdfrac{3x}{x^2-4}
\\&=
dfrac{(x+3)(x-2)}{(2x-1)^2}timesdfrac{x(2x-1)^2}{(x+3)(x-1)}cdotdfrac{3x}{(x+2)(x-2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{x+3})(cancel{x-2})}{cancel{(2x-1)^2}}timesdfrac{xcancel{(2x-1)^2}}{(cancel{x+3})(x-1)}cdotdfrac{3x}{(x+2)(cancel{x-2})}
\\&=
dfrac{3x^2}{(x-1)(x+2)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{3x^2}{(x-1)(x+2)}
text{, }xneleft{ -3,-2,dfrac{1}{2},1,2 right}
.$

Result
2 of 2
$$
dfrac{3x^2}{(x-1)(x+2)}
text{, }xneleft{ -3,-2,dfrac{1}{2},1,2 right}
$$
Exercise 9
Step 1
1 of 2
Using $A=dfrac{bh}{2}
,$ or the formula for the area of a triangle, with a height of $dfrac{5x-35}{x+3}$ and a base of $dfrac{4x^2}{x^2-16x+63}
,$ then the area is

$$
begin{align*}
A&=dfrac{left(dfrac{4x^2}{x^2-16x+63}right)left(dfrac{5x-35}{x+3}right)}{2}
.end{align*}
$$

The factored form of the expression above is

$$
begin{align*}
A&=left(dfrac{4x^2}{(x-9)(x-7)}right)left(dfrac{5(x-7)}{x+3}right)div2
\\
A&=left(dfrac{4x^2}{(x-9)(x-7)}right)left(dfrac{5(x-7)}{x+3}right)left(dfrac{1}{2}right)
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
A&=left(dfrac{cancel{2}(2)x^2}{(x-9)(cancel{x-7})}right)left(dfrac{5(cancel{x-7})}{x+3}right)left(dfrac{1}{cancel{2}}right)
\\
A&=dfrac{10x^2}{(x-9)(x+3)}
.end{align*}
$$

Since the denominator of the original equation cannot be zero, then the area of the triangle, $A,$ with its restriction is $A=dfrac{10x^2}{(x-9)(x+3)}
text{, }xneleft{ -3,7,9 right}
.$

Result
2 of 2
$$
A=dfrac{10x^2}{(x-9)(x+3)}
text{, }xneleft{ -3,7,9 right}
$$
Exercise 10
Step 1
1 of 3
Using $rho=dfrac{m}{v}
,$ or the formula for density, with a mass of $dfrac{p+1}{3p+1}$ and a density of $dfrac{p^2-1}{9p^2+6p+1}
,$ then the volume is

$$
begin{align*}
dfrac{p^2-1}{9p^2+6p+1}&=dfrac{dfrac{p+1}{3p+1}}{v}
\\
vqty(dfrac{p^2-1}{9p^2+6p+1})&=qty(dfrac{dfrac{p+1}{3p+1}}{v})v
\\
vqty(dfrac{p^2-1}{9p^2+6p+1})&=dfrac{p+1}{3p+1}
\\
v&=dfrac{frac{p+1}{3p+1}}{frac{p^2-1}{9p^2+6p+1}}
\\&=
dfrac{p+1}{3p+1}divdfrac{p^2-1}{9p^2+6p+1}
\\&=
dfrac{p+1}{3p+1}cdotdfrac{9p^2+6p+1}{p^2-1}
\\&=
dfrac{p+1}{3p+1}cdotdfrac{(3p+1)(3p+1)}{(p+1)(p-1)}
.end{align*}
$$

Step 2
2 of 3
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
v&=dfrac{p+1}{1}cdotdfrac{(1)(3p+1)}{(p+1)(p-1)}
&qty(text{cancel $3p+1$})
\\&=
dfrac{1}{1}cdotdfrac{(1)(3p+1)}{(1)(p-1)}
&qty(text{cancel $p+1$})
\\&=
dfrac{3p+1}{p-1}
.end{align*}
$$

Since the denominators of both the original and simplified equations cannot be zero, then the volume, $v,$ with its restriction is $v=dfrac{3p+1}{p-1}
text{, }pneleft{ -1,-dfrac{1}{3} ,1right}
.$

Result
3 of 3
$$
v=dfrac{3p+1}{p-1}
text{, }pneleft{ -1,-dfrac{1}{3} ,1right}
$$
Exercise 11
Step 1
1 of 1
The error is in the third step when the expression $x^2-y^2$ was divided by $(x-y).$ This is not allowed because the value of $(x-y)$ is zero which will cause division by zero, and hence, will make the expression undefined.
Exercise 12
Step 1
1 of 4
a) All numerators and denominators should be factored first so that any common factor between the numerator and the denominator can already be cancelled. This will make multiplication of the remaining numerators and denominators less complicated.
Step 2
2 of 4
b) Factoring the numerators and denominators of rational expressions (whenever possible) is the best approach in simplifying rational expressions. The only time that this approach will not apply is when none of the expressions can be factored out or when there is no common factor between the numerator and the denominator that can be cancelled.
Step 3
3 of 4
c) Yes this is true, since division of rational expressions is equivalent to multiplying by the reciprocal of the divisor.
Result
4 of 4
a) This can be simplified by cancelling common factors.

b) Sometimes, there are no common factors and you have to make sure that the factors which are cancelled are not equal to zero.

c) Yes

Exercise 13
Step 1
1 of 2
The given expression, $dfrac{dfrac{m^2-mn}{6m^2+11mn+3n^2}divdfrac{m^2-n^2}{2m^2-mn-6n^2}}{dfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}}
,$ is equivalent to

$$
begin{align*}
&
dfrac{m^2-mn}{6m^2+11mn+3n^2}divdfrac{m^2-n^2}{2m^2-mn-6n^2}divdfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}
\\&=
dfrac{m^2-mn}{6m^2+11mn+3n^2}cdotdfrac{2m^2-mn-6n^2}{m^2-n^2}divdfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}
\\&=
dfrac{m^2-mn}{6m^2+11mn+3n^2}cdotdfrac{2m^2-mn-6n^2}{m^2-n^2}cdotdfrac{3m^2+7mn+2n^2}{4m^2-7mn-2n^2}
.end{align*}
$$

The factored form of the expression above is

$$
begin{align*}
&
dfrac{m(m-n)}{(3m+n)(2m+3n)}cdotdfrac{(2m+3n)(m-2n)}{(m+n)(m-n)}cdotdfrac{(3m+n)(m+2n)}{(4m+n)(m-2n)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{m(cancel{m-n})}{(cancel{3m+n})(cancel{2m+3n})}cdotdfrac{(cancel{2m+3n})(cancel{m-2n})}{(m+n)(cancel{m-n})}cdotdfrac{(cancel{3m+n})(m+2n)}{(4m+n)(cancel{m-2n})}
\\&=
dfrac{m(m+2n)}{(m+n)(4m+n)}
.end{align*}
$$

Since the denominator of the original equation cannot be zero, then the simplified form with its restriction is $dfrac{m(m+2n)}{(m+n)(4m+n)}
text{, }mneleft{ -2n, -n,-dfrac{n}{4},-dfrac{n}{3},-dfrac{3n}{2},n,2n right}
.$

Result
2 of 2
$$
dfrac{m(m+2n)}{(m+n)(4m+n)}
text{, }mneleft{ -2n, -n,-dfrac{n}{4},-dfrac{n}{3},-dfrac{3n}{2},n,2n right}
$$
Exercise 14
Step 1
1 of 3
We are given the equation for Newton’s law of gravitation

$$
begin{equation*} F_g=Gdfrac{m_1m_2}{r^2} end{equation*}
$$

$$
begin{align*} text{ } m_1,;m_2 &= text{mass; of; two; objects}\
G &= text{gravitational; constant}\
r &= text{distance between } m_1 text{ and } m_2
end{align*}
$$

The mass of Mercury $m_M$ is 2.2 times greater than the mass of Pluto $m_P$ which implies

$$
begin{equation*} m_M=2.2m_Pend{equation*}
$$

Meanwhile, Pluto’s distance from the sun $r_P$ is 102.1 times as much as that of Mercury $r_M$ which implies

$$
begin{equation*} r_P=102.1 r_Mend{equation*}
$$

We would like to find the ratio of Sun’s gravitational forces of Mercury to that of Pluto, that is, $dfrac{F_{g,M}}{F_{g,P}}$

Step 2
2 of 3
Let $m_S$ be the mass of the sun.

The gravitational force on Mercury is
$$
begin{equation*}F_{g,M}=dfrac{Gm_Sm_M}{r_M^2}end{equation*}
$$

Since $m_P=dfrac{m_M}{2.2}$ and $r_P=102.1r_M$, the gravitational force on Pluto is

$$
begin{equation*}F_{g,P}=dfrac{Gm_Sm_P}{r_P^2}=dfrac{Gm_S(m_M/2.2)}{(102.1r_M)^2}=dfrac{1/2.2}{102.1^2}dfrac{Gm_Sm_M}{r_M^2}end{equation*}
$$

Therefore

$$
begin{equation*}F_{g,P}=dfrac{1/2.2}{102.1^2}F_{g,M}implies dfrac{F_{g,M}}{F_{g,P}}=dfrac{102.1^2}{1/2.2}=22933.7end{equation*}
$$

Result
3 of 3
The sun’s gravitational force on Mercury is 22933.7 times as much as that on Pluto.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New