Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 198: Check Your Understanding

Exercise 1
Step 1
1 of 4
Make a table of values and sketch the graph. You can also use your graphing calculator.

a)Exercise scan

Step 2
2 of 4
b)Exercise scan
Step 3
3 of 4
c)Exercise scan
Result
4 of 4
a) $(3,9)$ , $(-2,4)$

b) $(0,3)$ , $(-0.25,2.875)$

c) no solution

Exercise 2
Step 1
1 of 5
$bold{Concept:}$ The value of $x$ at which the graph of $f(x)$ and $g(x)$ intersects is the solution of $f(x)=g(x)$
Step 2
2 of 5
$bold{Solution:}$

a)

$f(x)=-x^2+6x-5$ ; $g(x)=-4x+19$

$f(x)=g(x)$

$-x^2+6x-5=-4x+19$

$-x^2+10x-24=0$

$x^2-10x+24=0$

Solve by factoring

$$
(x-6)(x-4)=0
$$

$x=6$ and $x=4$

Substitute this values to either of the two equations. We shall choose $g(x)$

$g(6)=-4(6)+19=-5$

$g(4)=-4(4)+19=3$

Therefore, the points of intersection are $(6,-5)$ and $(4,3)$

Step 3
3 of 5
b)

$f(x)=2x^2-1$ ; $g(x)=3x+1$

$f(x)=g(x)$

$2x^2-1=3x+1$

$2x^2-3x-2=0$

Solve by factoring

$(x-2)(2x+1)=0$

$x=2$ and $x=-dfrac{1}{2}$

$g(2)=3(2)+1=7$

$g(-0.5)=3(-0.5)+1=-dfrac{1}{2}$

The points of intersection are $left(3,7right)$ and $left(-dfrac{1}{2},-dfrac{1}{2}right)$

Step 4
4 of 5
c)

$f(x)=3x^2-2x-1$ ; $g(x)=-x-6$

$f(x)=g(x)$

$3x^2-2x-1=-x-6$

$3x^2-x+5=0$

Remember that if $b^2-4ac<0$, there are no solutions

$a=3$ , $b=-1$, $c=5$

$b^2-4ac=(-1)^2-4(3)(5)=-59<0$

Thus, no intersection points.

Result
5 of 5
a) $(4,3), (6,-5)$

b) (2,7), $left(-dfrac{1}{2},-dfrac{1}{2}right)$

c) no solution

Exercise 3
Step 1
1 of 3
$bold{Concept:}$ The value of $x$ at which the graph of $f(x)$ and $g(x)$ intersects is the solution of $f(x)=g(x)$
Step 2
2 of 3
$bold{Solution:}$

Equate $f(x)$ and $g(x)$

$f(x)=g(x)$

$4x^2+x-3=5x-4$

$4x^2-4x+1=0$

If $b^2-4ac>0implies 2$ intersection points

$b^2-4ac=0implies$ only 1 intersection point

$b^2-4ac<0implies$ no intersection points

$a=4$, $b=-4$, $c=1$

$b^2-4ac=(-4)^2-4(4)(1)=0$

Since $b^2-4ac=0$, there is only one intersection point.

Result
3 of 3
one intersection point
Exercise 4
Step 1
1 of 6
$bold{Concept:}$ The value of $x$ at which the graph of $f(x)$ and $g(x)$ intersects is the solution of $f(x)=g(x)$
Step 2
2 of 6
[begin{gathered}
a) fleft( x right) = gleft( x right) hfill \
– 2{x^2} – 5x + 20 = 6x – 1 hfill \
2{x^2} + 11x – 21 = 0 hfill \
{text{Use factoring}} hfill \
left( {x + 7} right)left( {2x – 3} right) = 0 hfill \
x = – 7{text{ or }}x = frac{3}{2} hfill \
{text{Subsititute each values of }}x hfill \
{text{to either equations}}{text{.}} hfill \
hfill \
gleft( { – 7} right) = 6left( { – 7} right) – 1 = – 43 hfill \
gleft( {frac{3}{2}} right) = 6left( {frac{3}{2}} right) – 1 = 8 hfill \
hfill \
{text{Therefore, the intersection points are}} hfill \
left( { – 7, – 43} right){text{ and }}left( {frac{3}{2},8} right) hfill \
end{gathered} ]
Step 3
3 of 6
[begin{gathered}
{text{b)}},fleft( x right) = gleft( x right) hfill \
3{x^2} – 2 = x + 7 hfill \
3{x^2} – x – 9 = 0 hfill \
{text{We cannot factor this so we shall}} hfill \
{text{use quadratic formula}} hfill \
a = 3{text{ , }}b = – 1,{text{ }}c = – 9 hfill \
x = frac{{ – b pm sqrt {{b^2} – 4ac} }}{{2a}} hfill \
x = frac{{ – left( { – 1} right) pm sqrt {{{left( { – 1} right)}^2} – 4left( 3 right)left( { – 9} right)} }}{{2left( 3 right)}} hfill \
x = frac{{1 pm sqrt {1 + 109} }}{6} hfill \
x = frac{{1 pm sqrt {110} }}{6} hfill \
x = – 1.58{text{ or 1}}{text{.91}} hfill \
hfill \
{text{Subsititute each values of }}x hfill \
{text{to either equations}}{text{.}} hfill \
hfill \
gleft( x right) = x + 7 hfill \
gleft( { – 1.58} right) = left( { – 1.58} right) + 7 = 5.42 hfill \
gleft( {{text{1}}{text{.91}}} right) = 1.91 + 7 = 8.91 hfill \
hfill \
{text{Therefore, the intersection points are}} hfill \
left( { – 1.58,5.42} right){text{ and }}left( {1.91,8.91} right) hfill \
end{gathered} ]
Step 4
4 of 6
[begin{gathered}
{text{c)}},fleft( x right) = gleft( x right) hfill \
5{x^2} + x – 2 = – 3x – 6 hfill \
5{x^2} + 4x + 4 = 0 hfill \
{text{We cannot factor this so we shall}} hfill \
{text{use quadratic formula}} hfill \
a = 5{text{ , }}b = 4,{text{ }}c = 4 hfill \
{text{Observe that}} hfill \
{b^2} – 4ac = {4^2} – 4left( 5 right)left( 4 right) = – 64 < 0 hfill \
hfill \
{text{Therefore, no intersection point}}{text{.}} hfill \
end{gathered} ]
Step 5
5 of 6
[begin{gathered}
{text{d)}},fleft( x right) = gleft( x right) hfill \
– 4{x^2} – 2x + 3 = 5x + 4 hfill \
– 4{x^2} – 7x – 1 = 0 hfill \
4{x^2} + 7x + 1 = 0 hfill \
hfill \
{text{We cannot factor this so we shall}} hfill \
{text{use quadratic formula}} hfill \
a = 4{text{ , }}b = 7,{text{ }}c = 1 hfill \
x = frac{{ – b pm sqrt {{b^2} – 4ac} }}{{2a}} hfill \
x = frac{{ – 7 pm sqrt {{7^2} – 4left( 4 right)left( 1 right)} }}{{2left( 4 right)}} hfill \
x = frac{{ – 7 pm sqrt {49 – 16} }}{8} hfill \
x = frac{{ – 7 pm sqrt {33} }}{8} hfill \
x = – 1.59{text{ or }}0.16 hfill \
hfill \
{text{Subsititute each values of }}x hfill \
{text{to either equations}}{text{.}} hfill \
hfill \
gleft( x right) = 5x + 4 hfill \
gleft( { – 1.59} right) = 5left( { – 1.59} right) + 4 = – 3.95 hfill \
gleft( { – 0.16} right) = 5left( {0.1573} right) + 4 = 3.2 hfill \
hfill \
{text{Therefore, the intersection points are}} hfill \
left( { – 1.59, – 3.95} right){text{ and }}left( { – 0.16,3.2} right) hfill \
end{gathered} ]
Result
6 of 6
a) $(1.5,8)$ , $(-7,-43)$

b) $(1.91,8.91)$ , $(-1.57,5.43)$

c) no solutions

d) $(-0.16,3.2)$, $(1.59,-3.95)$

Exercise 5
Step 1
1 of 2
Let $x$ be the smaller integer.

“an integer two more than another integer” $implies$ $x+2$

“twice the larger integer is one more than the square of the smaller integer” $implies 2(x+2)=x^2+1$

$2x+4=x^2+1$

$x^2-2x-3=0$

Solve by factoring

$(x-3)(x+1)=0$

$x=3$ or $x=-1$

If $x=3$ , $x+2=5$

If $x=-1$ , $x+2=1$

Therefore, the integers that satisfy the conditions mentioned are

3 and 5 or $-1$ and $1$

Result
2 of 2
3 and 5 or $-1$ and $1$
Exercise 6
Step 1
1 of 3
$bold{Concept:}$ The break-even point occurs when the revenue function $R(t)$ is equal to production cost $C(t)$
Step 2
2 of 3
$bold{Solution:}$

Equate the revenue function and cost function

$R(t)=C(t)$

$-50t^2+300t=600-50t$

$50t^2-350t+600=0$

$50(t-4)(t-3)=0$

$t=4$ or $t=3$

Both values of $t$ makes $R(t)>0$ and $C(t)>0$, so the price that will allow it to break-even is

$$3.00$ or $$4.00$

Result
3 of 3
$$3.00$ or $$4.00$
Exercise 7
Step 1
1 of 4
Refer to the graph shown.

(i) one point : red

(ii) two points: purple

(iii) no points: orangeExercise scan

Step 2
2 of 4
b) Since the lines have the same slope, they only vary in their $y$-intercept.

(i) one point (red): $y=-4x+1$

(ii) two points (purple): $y=-4x+6$

(iii) no points (orange): $y=-4x-6$

Step 3
3 of 4
c) A line with a slope of $-4$ can be written as $g(x)=-4x+v$ where $c$ is the $y$-intercept.

The intersection point of the graph $f(x)=(x-2)^2-3$ and a line $g(x)=-4x+v$ occurs at values of $x$ where

$f(x)=g(x)$

$(x-2)^2-3=-4x+v$

Rewrite the equation in standard form.

$x^2-4x+4-3=-4x+v$

$x^2+1-v=0$

$a=1$, $b=0$ , $c=1-v$
We shall calculate the $b^2-4ac$ to know which values of $c$ can produce different number of solutions.

$b^2-4ac=0^2-4(1)(1-v)=-4+4v=4(v-1)$

2 intersection points: $4(v-1)>0implies v>1$

1 intersection point: $4(v-1)=0implies v=1$

no intersection point: $4(v-1)<0implies v<1$

Therefore, all lines with slope $-4$ that do not intersect with the given parabola should have $y$-intercepts less than 1.

Result
4 of 4
a) see graph inside

b) (i) $y=-4x+1$, (ii) $y=-4x+6$ , (iii) $y=-4x-6$ ;

c) $y$-intercepts are all less than 1

Exercise 8
Step 1
1 of 3
$3x+k=2x^2-5x+3$

$k=2x^2-8x+3$

$$
2x^2-8x+3-k=0
$$

Set the two equations equal to one another and put into standard form
Step 2
2 of 3
$-8^2-4(2)(3-k)=0$

$64-8(3-k)=0$

$64-24+8k=0$

$40+8k=0$

$8k=-40$

$$
k=-5
$$

We know there is one root if $b^2-4ac=0$. Plug the values into the equation from standard form and solve for $k$
Result
3 of 3
-5
Exercise 9
Step 1
1 of 3
$4x+k=-3x^2-x+4$

$k=-3x^2-5x+4$

$$
-3x^2-5x+4-k=0
$$

Set the two equations equal to one another and put into standard form
Step 2
2 of 3
$-5^2-4(-3)(4-k)<0$

$25+12(4-k)<0$

$25+48-12k<0$

$73-12k<0$

$-12kfrac{73}{12}
$$

We know there is no roots if $b^2-4ac<0$. Plug the values into the equation from standard form and solve for $k$
Result
3 of 3
$$
k>frac{73}{12}
$$
Exercise 10
Step 1
1 of 3
We can find the time at which the daredevil released the parachute by finding the intersection points.

$-4.9t^2+t+360=-4t+142$

$4.9t^2-5t-218=0$

We cannot factor this so we shall use quadratic formula

$t=dfrac{-bpmsqrt{b^2-4ac}}{2a}$

$t=dfrac{(-5)pmsqrt{(-5)^2-4(4.9)(-218)}}{2(4.9)}$

$t=-6.18$ or $7.20$

Choose the positive values.

Step 2
2 of 3
Exercise scan
Result
3 of 3
$7.2$ s
Exercise 11
Step 1
1 of 3
$bold{Concept:}$ A line $g(x)$ is tangent to a parabola $f(x)$ if they intersect at exactly one point. In other words, the equation $f(x)=g(x)$ must have one solution. This happens when $b^2-4ac=0$.

$f(x)=g(x)$

$3x^2+4x-2=mx-5$

$3x^2+4x-2-mx+5=0$

$3x^2+x(4-m)+3=0$

$a=3$ , $b=(4-m)$ , $c=3$

$b^2-4ac=(4-m)^2-4(3)(3)=0$

$(4-m)^2=36$

$4-m=pm sqrt{36}$

$4-m=pm 6$

$m=4pm 6$

$m=-2$ or $10$

Therefore, the line with a $y$-intercept of $-5$ would be tangent to the parabola if it has slope of $-2$ or $10$.

Step 2
2 of 3
We can confirm this by graphing.Exercise scan
Result
3 of 3
$-2$ or $10$
Exercise 12
Step 1
1 of 3
The blocker can block the ball if $h(t)$ and $g(t)$ intersects at least once. In other words, the equation $f(x)=g(x)$ must have 1 or more solution.

$f(x)=g(x)$

$-4.9t^2+18.24t+0.8=-1.43t+4.26$

$4.9t^2-19.67t+3.46=0$

We shall use quadratic formula

$a=4.9$ , $b=-19.67$ , $c=3.46$

$t=dfrac{-bpmsqrt{b^2-4ac}}{2a}$

$t=dfrac{19.67pmsqrt{(-19.67)^2-4(4.9)(3.46)}}{2(4.9)}$

$t=3.83$ or $0.18$

If $t=3.83implies$ $g(3.83)=-1.43(3.83)+4.26=-1.21$ not possible since height must be positive

If $t=0.18implies$ $g(0.18)=-1.43(0.18)+4.26=4.00$ this is possible

Therefore, the blocker can block it after $0.18$ s at height 4 m above the ground

Note that the blocker’s hand must reach 4 m so he must jump very high. Theoretically it is possible, but practically it might be difficult.

Step 2
2 of 3
We can confirm this by graphing.Exercise scan
Result
3 of 3
Yes, $0.18$ s after kick at $(0.18,4.0)$
Exercise 13
Step 1
1 of 2
We can determine the number of intersections without solving by either of the following.

1) Plot the graphs of each function then count the intersection points.

2) Equate the two functions and rewrite to standard form $ax^2+bx+c=0$. Then calculate $b^2-4ac$.

$b^2-4ac>0implies 2$ intersection points

$b^2-4ac=0implies$ 1 intersection point

$b^2-4ac<0implies$ no intersection points

Result
2 of 2
(1) by graphing

(2) by calculating $b^2-4ac$

Exercise 14
Step 1
1 of 2
We can obtain the intersection points by solving the system of equations.

$2x+3y+6=0implies 3y=-2x-6$

Substitute this value of $3y$ to

$x^2-2x+3y+6=0$

$x^2-2x+(-2x-6)+6=0$

$x^2-4x=0$

$x(x-4)=0$

$x=0$ or $x=4$

Substitute this values of $x$ to the expression for $y$,
knowing that $3y=-2x-6$

$y=dfrac{3y}{3}=dfrac{-2x-6}{3}$

if $x=0implies y=dfrac{-2(0)-6}{3}=-2$

if $x=4implies y=dfrac{-2(4)-6}{3}=-dfrac{14}{3}$

Therefore, the intersection points are

$(0,-2)$ and $left(4,-dfrac{14}{3}right)$

Result
2 of 2
$(0,-2)$ and $left(4,-dfrac{14}{3}right)$
Exercise 15
Step 1
1 of 4
no intersection pointsExercise scan
Step 2
2 of 4
1 intersection pointExercise scan
Step 3
3 of 4
2 intersection pointsExercise scan
Result
4 of 4
3 ways ; see sketches inside
Exercise 16
Step 1
1 of 3
The intersection points of $f(x)$ and $g(x)$ corresponds to the value of $x$ at which $f(x)=g(x)$

$f(x)=g(x)$

$x^2-4=-3x^2+2x+8$

$4x^2-2x-12=0$

$2x^2-x-6=0$

$(x-2)(2x+3)=0$

$x=2$ or $x=-dfrac{3}{2}=-1.5$

We shall find the value of $y$ at each values of $x$ using either $f(x)$ or $g(x)$

$y=f(2)=2^2-4=0$

$y=f(-1.5)^2-4=-1.75$

Therefore, the points of intersection are

$(2,0)$ and $(-1.5,-1.75)$

Now we shall find the equation of the line that passes through these points

Step 2
2 of 3
Remember the formula for slope

$m=dfrac{y_2-y_1}{x_2-x_1}=dfrac{-1.75-0}{-1.5-2}=0.5$

Now, we can write the point-slope form using either of the points

$y-y_1=m(x-x_1)$

$y-0=0.5(x-2)$

$y=0.5x-1$

Therefore, the equation of the line passing through the intersection points of $f(x)$ and $g(x)$ is

$$
y=0.5x-1
$$

Result
3 of 3
$$
y=0.5x-1
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New