Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Section 2-1: Adding and Subtracting Polynomials

Exercise 1
Step 1
1 of 4
$3x^2-7x+5+x^2-x+3$

$$
=4x^2-8x+8
$$

Part A
Step 2
2 of 4
$x^2-6x+1+x^2+6x-5$

$$
=2x^2-4
$$

Part B
Step 3
3 of 4
$2x^2-4x+3-x^2+3x-2+x^2-1$

$$
=2x^2
$$

Part C
Result
4 of 4
(a) $4x^2-8x+8$

(b) $2x^2-4$

(c) $2x^2$

Exercise 2
Solution 1
Solution 2
Step 1
1 of 2
Simplify $f(x)$ and $g(x)$ by combining similar terms.

Remember that $a-(c-d+e)=a+(-c+d-e)$

$f(x)=(2x-1)-(3-4x)+(x+2)$

$f(x)=(2x-1)+(-3+4x)+(x+2)$

$f(x)=(2x+4x+x)+(-1-3+2)$

$f(x)=7x-2$

$g(x)=(-x+6)+(6x-9)-(-2x-1)$

$g(x)=(-x+6)+(6x-9)+(2x+1)$

$g(x)=(-x+6x+2x)+(6-9+1)$

$g(x)=7x-2$

Therefore, $f(x)=g(x)$

Result
2 of 2
$f(x)=7x-2$

$g(x)=7x-2$

$$
therefore f(x)=g(x)
$$

Step 1
1 of 2
$2x-1-3+4x+x+2$

$$
7x-2
$$

Combine like terms for $f(x)$
Step 2
2 of 2
$-x+6+6x-9+2x+1$

$$
7x-2
$$

Combine like terms for $g(x)$
Exercise 3
Step 1
1 of 2
You can choose any value of $x$ to show the non-equivalence except for $x=3$ because $f(3)=g(3)$.

We can choose $x=0$

$f(x)=2(x-3)+3(x-3)$

$f(0)=2(0-3)+3(0-3)$

$f(0)=2(-3)+3(-3)=-6-9=-15$

$g(x)=5(2x-6)$

$g(0)=5[2(0)-6]$

$g(0)=5(0-6)=-30$

Therefore, $f(x)neq g(x)$

Result
2 of 2
$f(0)=-15$

$g(0)=-30$

$$
therefore f(x)neq g(x)
$$

Exercise 4
Step 1
1 of 3
Simplify each expression by combining similar terms.

a) $(2a+4c+8)+(7a-9c-3)$

$=(2a+7a)+(4c-9c)+(8-3)$

$=9a-5c+5$

b) $(3x+4y-5z)+(2x^2+6z)$

$=3x+4y+2x^2+(-5x+6z)$

$=3x+4y+2x^2+z$

c) $(6x+2y+9)+(-3x-5y-8)$

$=(6x-3x)+(2y-5y)+(9-8)$

$=3x-3y+1$

Step 2
2 of 3
d) $(2x^2-7x+6)+(x^2-2x-9)$

$=(2x^2+x^2)+(-7x-2x)+(6-9)$

$=3x^2-9x-3$

e) $(-4x^2-2xy)+(6x^2-3xy+2y^2)$

$=(-4x^2+6x^2)+(-2xy-3xy)+2y^2$

$=2x^2-5xy+2y^2$

f) $(x^2+y^2+8)+(4x^2-2y^2-9)$

$=(x^2+4x^2)+(y^2-2y^2)+(8-9)$

$=5x^2-y^2-1$

Result
3 of 3
a) $9a-5c+5$

b) $2x^2+3x+4y+z$

c) $3x-3y+1$

d) $3x^2-9x-3$

e) $2x^2-5xy+2y^2$

f) $5x^2-y^2-1$

Exercise 5
Step 1
1 of 8
Simplify the following expressions by combining similar terms. Also be careful in subtracting algebraic expressions.

$$
begin{equation*}a-(b-c+d)=a+(-b+c-d)end{equation*}
$$

Step 2
2 of 8
$$
begin{align*}
bold{a)} ;; (m-n+2p)-(3n+p-7)
&= m-n+2p+(-3n-p+7)\
&= m+(-n-3n)+(2p-p)+7\
&= boxed{m-4n+p+7}
end{align*}
$$
Step 3
3 of 8
$$
begin{align*} bold{b)};; (-6m-2q+8)-(2m+2q+7)
&=(-6m-2q+8)+(-2m-2q-7)\
&=(-6m-2m)+(-2q-2q)+(8-7)\
&=boxed{-8m-4q+1}
end{align*}
$$
Step 4
4 of 8
$$
begin{align*} bold{c)};; (4a^2-9)-(a^3+2a-9)
&=(4a^2-9)+(-a^3-2a+9)\
&=4a^2-a^3-2a+(-9+9)\
&=boxed{4a^2-a^3-2a}
end{align*}
$$
Step 5
5 of 8
$$
begin{align*} bold{d)};; (2m^2-6mn+8n^2)\-(4m^2-mn-7n^2)
&=(2m^2-6mn+8n^2)+(-4m^2+mn+7n^2)\
&=(2m^2-4m^2)+(-6mn+mn)+(8n^2+7n^2)\
&=boxed{-2m^2-5mn+15n^2}
end{align*}
$$
Step 6
6 of 8
$$
begin{align*} bold{e)} ;;(3x^2+2y^2+7)-(4x^2-2y^2-8)
&=(3x^2+2y^2+7)+(-4x^2+2y^2+8)\
&=(3x^2-4x^2)+(2y^2+2y^2)+(7+8)\
&=boxed{-x^2+4y^2+15}\
end{align*}
$$
Step 7
7 of 8
$$
begin{align*} bold{f)} ;;5x^2-(2x^2-30)-(-20)
&=5x^2+(-2x^2+30)+(20)\
&=(5x^2-2x^2)+(30+20)\
&=boxed{3x^2+50}
end{align*}
$$
Result
8 of 8
a) $m-4n+p+7$

b) $-8m-4q+1$

c) $-a^3+4a^2-2a$

d) $-2m^2-5mn+15n^2$

e) $-x^2+4y^2+15$

f) $3x^2+50$

Exercise 6
Step 1
1 of 8
Simplify the following expressions by combining similar terms. Also be careful in subtracting algebraic expressions.

$$
begin{equation*}a-(b-c+d)=a+(-b+c-d)end{equation*}
$$

Step 2
2 of 8
$$
begin{align*}
bold{a)};;;;(2x-y)-(-3x+4y)+(6x-2y)&= (2x-y)+(3x-4y)+(6x-2y)\
&=(2x+3x+6x)+(-y-4y-2y)\
&=boxed{11x-7y}\
end{align*}
$$
Step 3
3 of 8
$$
begin{align*}
bold{b)};;;;(3x^2-2x)+(x^2-7x)-(7x+3)
&= (3x^2+x^2)+(-2x-7x-7x)+3\
&=boxed{4x^2-16x+3}\
end{align*}
$$
Step 4
4 of 8
$$
begin{align*}
bold{c)};;;;&(2x^2+xy-y^2)-(x^2-4xy-y^2)+(3x^2-5xy) \
&;;= (2x^2+xy-y^2)+(-x^2+4xy+y^2)+(3x^2-5xy)\
&;;=(2x^2-x^2+3x^2)+(xy+4xy-5xy)+(-y^2+y^2)\
&;;=boxed{4x^2}\
end{align*}
$$
Step 5
5 of 8
$$
begin{align*}
bold{d)};;;;&(xy-xz+4yz)+(2x-3yz)-(4y-xz)\
&;;;;= (xy-xz+4yz)+(2x-3yz)+(-4y+xz)\
&;;;;=xy+(-xz+xz)+(4yz-3yz)+2x-4y\
&;;;;=xy+0+yz+2x-4y\
&;;;;=boxed{xy+yz+2x-4y}\
end{align*}
$$
Step 6
6 of 8
$$
begin{align*} bold{e)};;;;left( frac{1}{2}x+dfrac{1}{3}yright)-left(dfrac{1}{5}x-yright)
&= left(frac{1}{2}x+frac{1}{3}yright)+left(-frac{1}{5}x+yright)\
&= left(frac{1}{2}x-frac{1}{5}xright)+left(frac{1}{3}y+yright)\
&= left(frac{5}{10}x-frac{2}{10}xright)+left(frac{1}{3}y+frac{3}{3}yright)\
&= boxed{ dfrac{3}{10}x+dfrac{4}{3}y}\
end{align*}
$$
Step 7
7 of 8
$$
begin{align*} bold{f)};;;;left(dfrac{3}{4}x+dfrac{1}{2}yright)-left(dfrac{2}{3}x+dfrac{1}{4}y-1right)
&= left(dfrac{3}{4}x+dfrac{1}{2}yright)+left(-dfrac{2}{3}x-dfrac{1}{4}y+1right)\
&= left(dfrac{3}{4}x-dfrac{2}{3}xright)+left(dfrac{1}{2}y-dfrac{1}{4}yright)+1\
&= left(dfrac{3(3)}{4(3)}x-dfrac{2(4)}{3(4)}xright)+left(dfrac{1(2)}{2(2)}y-dfrac{1}{4}yright)+1\
&= left(dfrac{9}{12}x-dfrac{8}{12}xright)+left(dfrac{2}{4}y-dfrac{1}{4}yright)+1\
&=boxed{dfrac{1}{12}x+dfrac{1}{4}y+1}\
end{align*}
$$
Result
8 of 8
a) $11x-5y$

b) $4x^2-16x-3$

c) $4x^2$

d) $xy+yz+2x-4y$

e) $dfrac{3}{10}x+dfrac{4}{3}y$

f) $dfrac{1}{12}x+dfrac{1}{4}y+1$

Exercise 7
Solution 1
Solution 2
Step 1
1 of 3
$3x^2-x-5x^2+xneq-2x^2-2x$

$$
-2x^2neq-2x^2-2x
$$

Simplify the two expressions by combining like terms and setting them equal to one another.
Step 2
2 of 3
$3(1)^2-1-5(1)^2+1neq-2(1)^2-2(1)$

$3-1-5+1neq-2-2$

$$
-3neq-4
$$

Let $x=1$ and plug into the equations setting them equal to one another
Result
3 of 3
See expressions
Step 1
1 of 3
$bold{Method; 1:}$ Simplifying both expressions

$$
begin{align*} (3x^2-x)-(5x^2-x)
&= (3x^2-x)+(-5x^2+x)\
&=(3x^2-5x^2)+(-x+x)\
&= -2x^2\ &neq -2x^2-2x
end{align*}
$$

Therefore, the two expressions are not equivalent.

Step 2
2 of 3
$bold{Method; 2}$: Substitute some values of $x$. Here, we will try $x=1$

The value of the first expression at $x=1$ is

$$
begin{align*} (3x^2-x)-(5x^2-x)
&= [3(1)^2-(1)]-[5(1)^2-1]\
&= (3-1)-(5-1)\
&= 2-4\
&=-2
end{align*}
$$

The value of the second expression at $x=1$ is

$$
begin{align*} -2x^2-2x
&= -2(1)^2-2(1)\
&=-2(1)-2\
&=-4
end{align*}
$$

Since the values of the expressions evaluated at one value of $x$ is not the same, the two expressions are not equivalent.

Result
3 of 3
Method 1: Simplify both expressions.

Method 2: Substitute $x=1$ to both expressions

Exercise 8
Step 1
1 of 8
We shall simplify each expression. If the result is identical, then they are equivalent ; otherwise, it is not equivalent.
Step 2
2 of 8
$$
begin{align*}
bold{a)};;;; f(x) &= (2x^2+7x-2)-(3x+7)\
&= (2x^2+7x-2)+(-3x-7)\
&=(2x^2)+(7x-3x)+(-2-7)\
&=2x^2+4x-9\\
g(x) &= (x^2+12)+(x^2+4x-17)\
&=(x^2+x^2)+4x+(12-17)\
&=2x^2+4x-5\\
&text{Therefore}, f(x)neq g(x)
end{align*}
$$
Step 3
3 of 8
$bold{b)}$ Remember the special product $(x+y)^3=x^3+3x^2y+3xy^2+y^3$

$$
begin{align*}
s_1(t) &= (t+2)^3\
&=t^3+3t^2(2)+3(t)(2^2)+2^3\
&=t^3+6t^2+12t+8\
&neq t^3+8\\
&text{Therefore}, s_1(t)neq s_2(t)
end{align*}
$$

Step 4
4 of 8
$bold{c)}$ Remember the distributive property $a(b+c)=ab+ac$

$$
begin{align*} y_1 &= (x-1)(x)(x+2)\
&= (x-1)(x^2+2x)\
&=x^2(x-1)+2x(x-1)\
&=x^3-x^2+2x^2-2x\
&=x^3+x^2-2x\\
y_2&=3x(x^2-1)\
&=3x(x^2)-3x(1)\
&=3x^3-3x\\
&text{Therefore}, y_1neq y_2\
end{align*}
$$

Step 5
5 of 8
$bold{d)}$ Be careful in subtracting expressions $a-(b+c-d)=a+(-b-c+d)$

$$
begin{align*} f(n) &= 0.5n^2+2n-3+(1.5n^2-6)\
&= (0.5n^2+1.5n^2)+2n+(-3-6)\
&=2n^2+2n-9\\
g(n) &= n^2-n+1-(-n^2-3n+10)\
&= n^2-n+1+(n^2+3n-10)\
&= n^2-n+1+n^2+3n-10\
&= (n^2+n^2)+(-n+3n)+(1-10)\
&=2n^2+2n-9\\
&text{Therefore}, f(n)=g(n)\
end{align*}
$$

Step 6
6 of 8
$bold{e)}$ Use distributive property $a(b+c)=ab+ac$

$$
begin{align*} y_1&=3p(q-2)+2p(q+5)\
&= (3p)(q)+(3p)(-2)+(2p)q+(2p)(5)\
&= 3pq-6p+2pq+10p\
&= (3pq+2pq)+(-6p+10p)\
&= 5pq+4p\\
y_2&=p(q+4)\
&= pq+4p\\
&text{Therefore}, y_1 neq y_2\
end{align*}
$$

Step 7
7 of 8
$bold{f)}$ Use distributive property $a(b+c)=ab+ac$

$$
begin{align*} f(m) &= m(5-m)-2(2m-m^2)\
&= 5m-m^2-(4m-2m^2)\
&= 5m-m^2+(-4m+2m^2)\
&= 5m-m^2-4m+2m^2\
&= (5m-4m)+(-m^2+2m^2)\
&= m+m^2\\
g(m) &= 4m^2(m-1)-3m^2+5m\
&= 4m^3-4m^2-3m^2+5m\
&= 4m^3+(-4m^2-3m^2)+5m\
&= 4m^3-7m^2+5m\\
&text{Therefore, } f(m)ne g(m)
end{align*}
$$

Result
8 of 8
a) $f(x)neq g(x)$

b) $s_1(t)neq s_2(t)$

c) $y_1neq y_2$

d) $f(n)=g(n)$

e) $y_1neq y_2$

f) $f(m)neq g(m)$

Exercise 9
Step 1
1 of 2
We must find non-equivalent polynomial such that $f(0)=g(0)$ and $f(2)=g(2)$

This is easier to do in factored form such that $f(0)=0$ and $f(2)=0$ implying that $(x)(x-2)$ must be a factor. To make them non-equivalent, we must multiply it when another factor that is different for $f(x)$ and $g(x)$

Here are some examples:

$f(x)=x(x-2)(x+1)$

$g(x)=x(x-2)(x+3)$

$f(x)=x(x-2)(3x+5)$

$g(x)=x(x-2)(5x+3)$

$f(x)=x(x-2)(x^2-2)$

$g(x)=x(x-2)(x^3+2x)$

Result
2 of 2
$f(x)=x(x-2)(x+1)$

$g(x)=x(x-2)(x+3)$

Exercise 10
Step 1
1 of 2
With $x$ correct answers from a total of $25$ items, $y$ questions unanswered, $6$ points for a correct answer, $2$ points for not answering a question, and $1$ point for an incorrect answer, then

a) Kosuke’s number of questions answered incorrectly is

$$
begin{align*}
(25-x-y)text{ items}
.end{align*}
$$

b) Kosukes score is

$$
begin{align*}
&
6(x)+2(y)+1(25-x-y)
\&=
6x+2y+25-x-y
\&=
(5x+y+25)text{ points}
.end{align*}
$$

c) Using the result of (b), then with $x=13$ and $y=25-13-7=5,$ Kosuke’s score is

$$
begin{align*}
&
5x+y+25
\&=
5(13)+5+25
\&=
65+5+25
\&=
95text{ points}
.end{align*}
$$

Result
2 of 2
a) $(25-x-y)$ items

b) $(5x+y+25)$ points

c) $95$ points

Exercise 11
Step 1
1 of 2
$2x+3y-1+2x+3y-1+w=7x+9y$

$4x+6y-2+w=7x+9y$

$$
w=3x+3y+2
$$

The perimeter is the sum of the side lengths. Let the unknown side lengths for which we are driving to solve be $w$. Combine like terms and simplify
Result
2 of 2
$$
3x+3y+2
$$
Exercise 12
Solution 1
Solution 2
Step 1
1 of 3
a) If $R(x)$ is revenue function and $C(x)$ is the cost function, then the profit function is $P(x)=R(x)-C(x)$

$$
begin{align*}
P(x) &= R(x)-C(x)\
&= (-50x^2+2500x)-(150x+9500)\
&= (-50x^2+2500x)+(-150x-9500)\
&= -50x^2+(2500x-150x)-9500\
P(x) &=-50x^2+2350x-9500\
end{align*}
$$

Step 2
2 of 3
b) We shall find the profit $P(x)$ when $x=12$

$$
begin{align*} P(12)&=-50(12^2)+2350(12)-9500\
&=-50(144)+2350(12)-9500\
P(12)&=$11500 end{align*}
$$

Result
3 of 3
a) $P(x)=-50x^2+2350x-9500$

b) $P(12)=$11500$

Step 1
1 of 3
$-50x^2+2500x-(150x+9500)$

$-50x^2+2500x-150x-9500$

$$
-50x^2+2350x-9500
$$

Part A
Step 2
2 of 3
$-50(12)^2+2350(12)-9500$

$-7200+28200-9500$

$$
$11500
$$

Part B
Result
3 of 3
See solutions
Exercise 13
Step 1
1 of 3
Two functions are said to be equivalent if they have the same value for all values of $x$ in their domain. If they have different value for at least one value of $x$, then they are not equivalent. If they are equal only for some values of $x$, then it cannot be determined.
Step 2
2 of 3
$bold{a);;}$ The functions are equal to some value of $x$ but we have no information whether they are equal for other values of $x$, thus, it cannot be determined.

$bold{b);;}$ We cannot conclude that they are non-equivalent because it is possible that $h(3)=h(4)$ and $g(3)=g(4)$ which lead to $h(3)=g(4)$. Thus, it cannot be determined.

$bold{c);;}$ At the same value of $x$, the two functions have different values, so it must be non-equivalent.

$bold{d);;}$ At the same value of $x$, the two functions have different values, so it must be non-equivalent.

$bold{e);;}$ $n(x)=p(x)$ for all $x$, so it must be equivalent.

Result
3 of 3
a) cannot be determined

b) cannot be determined

c) non-equivalent

d) non-equivalent

d) equivalent

Exercise 14
Solution 1
Solution 2
Step 1
1 of 3
His conclusion is correct. If two equations are equivalent when graphed they will be on top of one another preventing you from telling if there is a difference.
Part A
Step 2
2 of 3
He could determine if the equations were equivalent without graphing by sampling choosing a numerical value for the variable and plugging it into the equations. If two equations resulted in the same numerical answer then they are equivalent.
Part B
Result
3 of 3
See solutions
Result
1 of 1
a) His conclusion is correct. If two functions are equivalent, it would appear as one graph. Non-equivalent functions would have distinct graphs. Since he has three functions that resulted in two different graph, two of the function must be equivalent and the remaining one is not.

b) He could simplify the three expressions and should find that two of them are identical. He could also substitute values of $x$ to the equations, and the one that resulted in the same value must be equivalent.

Exercise 15
Step 1
1 of 4
$bold{a)}$ Here we need to prove that the pattern is true for any number on the calendar. Since there are 7 days in a week, each column is made of numbers whose first differences is 7. \\
Let $x$ be any number on the calendar.\\
begin{tabular}{|l|ll}
cline{1-1}
$x$ & & \ cline{1-1}
$x+7$ & & \ hline
multicolumn{1}{|c|}{$x+14$} & multicolumn{1}{c|}{$x+15$} & multicolumn{1}{c|}{$x+16$} \ hline
end{tabular}\\\
vertical entries (column): $x$, $x+7$, $x+14$\\
corner number: $x+14$\\
horizontal entries (row): $x+14$, $x+15$, $x+16$\\
The patterns says the sum of the five numbers is equal to five times the corner number minus 18.\\
sum of five numbers: begin{equation*}(x)+(x+7)+(x+14)+(x+15)+(x+16)=boxed{5x+52}end{equation*}
five times the corner number minus: begin{equation*} 18 = 5(x+14)-18=5x+70-18=boxed{5x+52}end{equation*}\
Since both expressions are equal to $5x+52$, this is true for any number $x$ on the calendar.\\
Step 2
2 of 4
$bold{b);;}$ We have shown in part(a) that the sum of the numbers in this pattern is $5x+52$ and the corner number is $x+14$, here we need to find value of $x+14$ such that $5x+52=112$. To do that, we must find the value of $x$ first.

$$
begin{align*} 5x+52&=112\
5x&=112-52 \
5x&=60\
x&=12 end{align*}
$$

The corner number is $x+14=12+14=boxed{26}$

Step 3
3 of 4
$bold{c);;}$ If $x$ is the corner number instead of $x+14$, the sum of the five numbers is obtained by replacing $x$ with $x-14$ \\
$5(x-14)+52=5x-70+52=boxed{5x-18}$\\
Alternatively, we can predict from the pattern that the entries would be:\\
begin{tabular}{|l|ll}
cline{1-1}
$x-14$ & & \ cline{1-1}
$x-7$ & & \ hline
multicolumn{1}{|c|}{$x$} & multicolumn{1}{c|}{$x+1$} & multicolumn{1}{c|}{$x+2$} \ hline
end{tabular}\\
So the sum is\\
$x+(x+1)+(x+2)+(x-7)+(x-14)=boxed{5x-18}$\\
Result
4 of 4
a) $x+(x+7)+(x+14)+(x+15)+(x+16)=5(x+14)-18$

b) 26

c) $5x-18$

Exercise 16
Step 1
1 of 4
$bold{a);;}$ We need to find 5 consecutive natural numbers whose sum is $105$. Consecutive natural numbers is obtained by adding 1 to the previous number. If $x$ is the first number,

$$
begin{align*} x+(x+1)+(x+2)+(x+3)+(x+4)&=105\
5x+10&=105\
5x&=95\
x&=19
end{align*}
$$

Therefore, the give consecutive numbers are

$$
19+20+21+22+23=105
$$

Step 2
2 of 4
$bold{ b);;}$ Notice from part(a) that the middle term $21$ is $dfrac{105}{5}$

This suggests that if $m=dfrac{n}{5}$, then $m$ must be the middle term which leads to

$$
n=(m-2)+(m-1)+(m)+(m+1)+(m+2)
$$

Step 3
3 of 4
$bold{c);;}$ We will do similar procedure as in part(a)

$$
begin{align*}
x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+(x+6)&=91\
7x+21&=91\
7x&=70\
x&=10
end{align*}
$$

Therefore, $10+11+12+13+14+15+16=91$

Result
4 of 4
a) $19+20+21+22+23$

b) $n=(m-2)+(m-1)+m+(m+1)+(m+2)$

c) $10+11+12+13+14+15+16$

Exercise 17
Step 1
1 of 2
Substituting $x=2$ in the given functions, then

$$
begin{align*}
f(x)&=ax+b
\
f(2)&=a(2)+b
\
f(2)&=2a+b
\\text{and}\\
g(x)&=cx+d
\
g(2)&=c(2)+d
\
g(2)&=2c+d
.end{align*}
$$

Since it is given that $f(2)=g(2),$ then

$$
begin{align}
2a+b=2c+d
.end{align}
$$

Substituting $x=5$ in the given functions, then

$$
begin{align*}
f(x)&=ax+b
\
f(5)&=a(5)+b
\
f(5)&=5a+b
\\text{and}\\
g(x)&=cx+d
\
g(5)&=c(5)+d
\
g(5)&=5c+d
.end{align*}
$$

Since it is given that $f(5)=g(5),$ then

$$
begin{align}
5a+b=5c+d
.end{align}
$$

Step 2
2 of 2
Subtracting equations (1) and (2) results to

$$
begin{align*}
2a+b-(5a+b)&=2c+d-(5c+d)
\
2a+b-5a-b&=2c+d-5c-d
\
-3a&=-3c
\
a&=c
.end{align*}
$$

Using $a=c$ in equation (1) results to

$$
begin{align*}
2a+b&=2c+d
\
2c+b&=2c+d
\
2c-2c+b&=d
\
b&=d
.end{align*}
$$

Since $a=c$ and $b=d,$ then

$$
begin{align*}
f(x)&=ax+b
\&=
cx+d
\&=g(x)
.end{align*}
$$

Hence, $f(x)$ and $g(x)$ are equivalent.

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New