Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 340: Chapter Self-Test

Exercise 1
Step 1
1 of 4
If $P(x,y)$ is the terminal point of angle $theta$, then

$r=sqrt{x^2+y^2}$

$cos theta=dfrac{x}{r}$

$sin theta=dfrac{y}{r}$

$tan theta=dfrac{y}{x}$

$sectheta=dfrac{1}{costheta}=dfrac{r}{x}$

$csctheta=dfrac{1}{sin theta}=dfrac{r}{y}$

$$
cottheta=dfrac{1}{tantheta}=dfrac{x}{y}
$$

Step 2
2 of 4
a) $P(-3,0)$

$r=sqrt{(-3)^2+0^2}=3$

i) $costheta=dfrac{-3}{3}=-1$

$sin theta=dfrac{0}{3}=0$

$tantheta=dfrac{0}{-3}=0$

$sectheta=dfrac{1}{costheta}=-1$

$csctheta=dfrac{1}{0}=text{undefined}$

$cottheta=dfrac{1}{0}=text{undefined}$

ii) The principal angle is $180^circ$ and related acute angle is $0^circ$.

Exercise scan

Step 3
3 of 4
b) $S(-8,-6)$

$r=sqrt{(-8)^2+(-6)^2}=sqrt{100}=10$

$cos theta=dfrac{-8}{10}=-dfrac{4}{5}$

$sin theta=dfrac{-6}{10}=-dfrac{3}{5}$

$tan theta=dfrac{-6}{-8}=dfrac{3}{4}$

$sectheta=dfrac{1}{costheta}=-dfrac{5}{4}$

$csctheta=dfrac{1}{sintheta}=-dfrac{5}{3}$

$cottheta=dfrac{1}{tantheta}=dfrac{4}{3}$

The reference acute angle is

$beta=tan^{-1}left|dfrac{-6}{-8}right|=37^circ$

Since $theta$ is in quadrant 3, the principal angle is

$$
theta=180^circ+beta=180+37=217^circ
$$

Exercise scan

Result
4 of 4
a) $sin theta=0$ , $costheta=-1$, $tan theta=0$

$sectheta=-1$ , $csctheta$ and $cottheta$ are undefined

$theta=180^circ$, $beta=0^circ$, see sketch inside

b) $sin theta=-dfrac{3}{5}$, $costheta=-dfrac{4}{5}$ , $tantheta=dfrac{3}{4}$

$csctheta=-dfrac{5}{3}$ , $sectheta=-dfrac{5}{4}$ , $cottheta=dfrac{4}{3}$

$theta=217^circ$ , $beta=37^circ$, see sketch inside

Exercise 2
Step 1
1 of 5
$bold{Steps;in;Solving;Trigonometric;Equations}$

1) Find the reference acute angle $beta$ using inverse trigonometric function as

$f(theta)=cimplies beta=f^{-1}(|c|)$

2) Based on the sign of $c$, determine the possible quadrants for $theta$ within the given range.

3) Find the principal angle $theta$ on those quadrants that has reference acute angle of $beta$

Step 2
2 of 5
begin{table}[]
defarraystretch{1.4}%
begin{tabular}{|l|l|l|l|l|}
hline
& QI & QII & QIII & QIV\ hline
sine & $+$ & $+$ & $-$ & $-$ \ hline
cosine & $+$ & $-$ & $-$ & $+$ \ hline
tangent & $+$ & $-$ & $+$ & $-$ \ hline
principal angle $theta$ & $;;;;beta;;;;$ & $180^circ-beta$ & $180^circ+beta$ & $360^circ-beta$ \ hline
end{tabular}
end{table}
Step 3
3 of 5
a) $sin theta=-dfrac{1}{2}implies beta=sin^{-1}left|-dfrac{1}{2}right|=30^circ$

$sin theta0$ in QI and QIV

QI: $theta=beta=30^circ$

QIV: $theta=360^circ-beta=360^circ-30^circ=330^circ$

Step 4
4 of 5
c) $cottheta=-1implies tantheta=dfrac{1}{-1}implies beta=tan^{-1}|-1|=45^circ$

$cottheta<0$ in QII and QIV

QII: $theta=180^circ-beta=180^circ-45^circ=135^circ$

QIV: $theta=360^circ-beta=360^circ-45^circ=315^circ$

$sectheta=-2implies costheta=-dfrac{1}{2}implies beta=cos^{-1}left|-dfrac{1}{2}right|=60^circ$

$costheta<0$ in QII and QIII

QII: $theta=180^circ-beta=180^circ-60^circ=120^circ$

QII: $theta=180^circ+beta=180^circ+60^circ=240^circ$

Result
5 of 5
a) $210^circ$ , $330^circ$

b) $30^circ$ , $330^circ$

c) $135^circ$ , $315^circ$

d) $120^circ$ , $240^circ$

Exercise 3
Step 1
1 of 3
a) Find $sintheta$ using the identity $sin^2theta+cos^2theta=1$

$sintheta=pmsqrt{1-cos^2theta}=pmsqrt{1-left(-dfrac{5}{13}right)}=pmsqrt{dfrac{144}{169}}=pmdfrac{12}{13}$

In QII, $sintheta>0$, thus, $sin theta=dfrac{12}{13}$

$$
sin thetacostheta=left(dfrac{12}{13}right)cdot left(-dfrac{5}{13}right)=-dfrac{60}{169}
$$

Step 2
2 of 3
b) $cot theta tan theta=dfrac{1}{tan theta}cdot tan theta=1$

This is an identity so it would be true for all real $theta$

Result
3 of 3
a) $-dfrac{60}{169}$

b) $1$

Exercise 4
Step 1
1 of 4
a) $tan^2phi+1$

$=dfrac{sin^2 phi}{cos^2phi}+1$

$color{#c34632}text{Use} sin^2theta+cos^2theta=1$

$=dfrac{1-cos^2phi}{cos^2phi}+1$

$=dfrac{1}{cos^2phi}-1+1$

$=dfrac{1}{cos^2phi}$

$$
=sec^2phi
$$

Step 2
2 of 4
b) $1+cot^2alpha$

$=1+dfrac{cos^2alpha}{sin^2alpha}$

$color{#c34632}text{Use} sin^2theta+cos^2theta=1$

$=1+dfrac{1-sin^2alpha}{sin^2alpha}$

$=1+dfrac{1}{sin^2alpha}-1$

$=dfrac{1}{sin^2alpha}$

$$
=csc^2alpha
$$

Step 3
3 of 4
Both identities are built upon the identity

$$
x^2+y^2=r^2implies left(dfrac{x}{r}right)^2+left(dfrac{y}{r}right)^2=1implies sin^2theta+cos^2theta=1
$$

Result
4 of 4
a) see proof inside

b) both are derived from $sin^2theta+cos^2theta=1$

Exercise 5
Step 1
1 of 3
Exercise scan
Step 2
2 of 3
b) $c^2=a^2+b^2-2abcos C$

$a^2=b^2+c^2-2bccos A$

$b^2=a^2+c^2-2accos B$

c) $dfrac{sin A}{a}=dfrac{sin B}{b}=dfrac{sin C}{c}$ or $dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$

Result
3 of 3
a) see example inside

b) $c^2=a^2+b^2-2abcos C$

$a^2=b^2+c^2-2bccos A$

$b^2=a^2+c^2-2accos B$

c) $dfrac{sin A}{a}=dfrac{sin B}{b}=dfrac{sin C}{c}$ or $dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$

Exercise 6
Step 1
1 of 3
a) Refer to the figure shown in your textbook.

Remember that $tan theta=dfrac{text{opposite side}}{text{adjacent side}}$

To find $w$, we can use tangent ratio to find $BD$ and $DC$, then add them together.

$tan 49^circ=dfrac{60.0}{BD}implies BD=dfrac{60.0}{tan 49^circ}=52.16$ m

$tan 53^circ=dfrac{60.0}{DC}implies DC=dfrac{60.0}{tan 53^circ}=45.21$ m

$w=BD+DC=52.16+45.21=97.4$ m

Step 2
2 of 3
b) To find $w$, we need to find the difference between $GJ$ and $HJ$.

$tan 40^circ=dfrac{5.5}{GJ}implies GJ=dfrac{5.5}{tan 40^circ}=6.55$

$tan 48^circ=dfrac{5.5}{HJ}implies HJ=dfrac{5.5}{tan 48^circ}=4.95$

$w=GJ-HJ=6.55-4.95=1.6$ m

Result
3 of 3
a) $97.4$ m

b) $1.6$ m

Exercise 8
Step 1
1 of 3
Sketch the situation as follows.Exercise scan
Step 2
2 of 3
We can use tangent function to relate $h$ with $AC$ and $BC$

$tan 41^circ=dfrac{h}{AC}implies AC=dfrac{h}{tan 41^circ}$

$tan 52^circ=dfrac{h}{BC}implies BC=dfrac{h}{tan 52^circ}$

$triangle ABC$ is a right triangle, thus, we can use Pythagorean formula

$AB^2=AC^2+BC^2$

$30^2=left(dfrac{h}{tan 41^circ}right)^2+left(dfrac{h}{tan 52^circ}right)^2$

$30^2=h^2left(dfrac{1}{tan^241^circ}+dfrac{1}{tan^2 52^circ}right)$

$h=sqrt{dfrac{30^2}{dfrac{1}{tan^2 41^circ}+dfrac{1}{tan^252^circ}}}$

$h=22$ m

Therefore, the tree is 22 m high.

Result
3 of 3
$22$ m
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New