All Solutions
Section 7-5: Arithmetic Series
$$
S_n=dfrac{n}{2}[;2t_1+(n-1)d;]
$$
$$
S_{10}=dfrac{10}{2}[2(59)+(10-1)(5)]=815
$$
$$
S_{10}=dfrac{10}{2}[2(31)+(10-1)(-8)]=-50
$$
$$
S_{10}=dfrac{10}{2}[2(-103)+(10-1)(-7)]=-1345
$$
$$
S_{10}=dfrac{10}{2}[2(-78)+(19-1)(22)]=210
$$
b.) -50
c.) -1345
d.) 210
$S_n=dfrac{n}{2}[;2t_1+(n-1)d;]$
In this case, we shall find $S_{20}$ for $t_1=10$ and $d=11$.
$$
S_{10}=dfrac{20}{2}[2(18)+(20-1)(11)]=2450
$$
2450
$$
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
Since the number of bricks in each stack increases linearly from the top, we can use an arithmetic series to model the total number of bricks in the $n^{th}$ row from the top.
In this case, $t_1=5$ and $t_n=62$
At the $20^{th}$ row,
$S_{20}=dfrac{20}{2}(5+62)=670$
Therefore, a total of $boxed{bold{670; bricks}}$ is present in the stack with 20 rows.
$t_1+t_2+t_3+t_4+…$
is arithmetic series if the difference between consecutive terms is constant, that is,
$t_2-t_1=t_3-t_2=t_4-t_3=d$
$bold{Arithmetic;Series}$ The sum of the first $n$ terms in an arithmetic sequence with first term $t_1$, $n^{th}$ term $t_n$, and common difference $d$ is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
The sum of the first $25$ terms is
$$
S_{25}=dfrac{25}{2}[2(-5)+(25-1)(6)]=1675
$$
The sum of the first $25$ terms is
$$
S_{25}=dfrac{25}{2}[2(18)+(25-1)(4)]=1650
$$
The sum of the first $25$ terms is
$$
S_{25}=dfrac{25}{2}[2(31)+(25-1)(-9)]=-1925
$$
b.) not arithmetic
c.) not arithmetic
d.) 1650
e.) -1925
$t_1+t_2+t_3+t_4+…$
is arithmetic series if the difference between consecutive terms is constant, that is,
$t_2-t_1=t_3-t_2=t_4-t_3=d$
$bold{Arithmetic;Series}$ The $n^{th}$ term of an arithmetic series $t_n$ with first term $t_1$ and common difference $d$ is
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
General term: $t_n=37+(n-1)(4)=4n+33$
12th term: $t_{12}=4(12)+33=81$
The sum of the first $12$ terms is
$$
S_{12}=dfrac{12}{2}[2(37)+(12-1)(4)]=708
$$
General term: $t_n=-13+(n-1)(-11)=-2-11n$
12th term: $t_{12}=-2-11(-11)=-134$
The sum of the first $12$ terms is
$$
S_{12}=dfrac{12}{2}[2(-13)+(12-1)(-11)=-882
$$
General term: $t_n=-18+(n-1)(6)=6n-24$
12th term: $t_{12}=6(12)-24=48$
The sum of the first $12$ terms is
$$
S_{12}=dfrac{12}{2}[2(-18)+(12-1)(6)=180
$$
General term: $t_n=dfrac{1}{5}+(n-1)cdot dfrac{1}{2}=dfrac{1}{2}n-dfrac{3}{10}$
12th term: $t_{12}=dfrac{1}{2}(12)-dfrac{3}{10}=5.7$
The sum of the first $12$ terms is
$$
S_{12}=dfrac{12}{2}left[2cdot dfrac{1}{5}+(12-1)left(dfrac{1}{2}right)right]=dfrac{177}{5}=35.4
$$
General term: $t_n=3.19+(n-1)(1.12)=1.12n+2.07$
12th term: $t_{12}=1.12(12)+2.07=15.51$
The sum of the first $12$ terms is
$$
S_{12}=dfrac{12}{2}[2(3.19)+(12-1)(1.12)]=112.2
$$
General term: $t_n=p+(n-1)(p+2q)=(p+2q)n-2q$
The $12^{th}$ term is
$t_{12}=p+(12-1)(p+2q)=12p+22q$
The sum of first 12 terms is
$$
S_{12}=dfrac{12}{2}(p+12p+22q)=78p+132q
$$
b.) $-8$82
c.) 180
d.) 35.4
e.) 112.2
f.) $78p+132q$
$t_1+t_2+t_3+t_4+…$
is arithmetic series if the difference between consecutive terms is constant, that is,
$t_2-t_1=t_3-t_2=t_4-t_3=d$
$bold{Arithmetic;Series}$ The $n^{th}$ term of an arithmetic series $t_n$ with first term $t_1$ and common difference $d$ is
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
The sum of first 20 terms is
$$
S_{20}=dfrac{20}{2}[2(8)+(20-1)(5)]=1110
$$
We can use the equation
$S_n=dfrac{n}{2}(t_1+t_n)$
$$
S_{20}=dfrac{20}{2}(31+109)=1400
$$
The sum of first 20 terms is
$$
S_{20}=dfrac{20}{2}[2(53)+(20-1)(-16)]=-1980
$$
Remember that for arithmetic sequence
$t_j-t_k=(j-k)d$
$implies t_4-t_1=(4-1)(d)implies t_1=18-3(17)=-33$
The sum of first 20 terms is
$$
S_{20}=dfrac{20}{2}[2(-33)+(20-1)(17)]=2570
$$
Remember that for arithmetic sequence
$t_j-t_k=(j-k)d$
$implies t_15-t_1=(15-1)(-3)implies t_1=149$
Thus, the sum of first 20 terms is
$$
S_{20}=dfrac{20}{2}[2(149)+(20-1)(-3)]=2410
$$
Remember that for arithmetic sequence
$t_j-t_k=(j-k)d$
$implies t_{13}-t_7=(13-7)(d)implies d=11$
To solve for $t_1$
$t_7-t_1=(7-1)dimplies t_1=43-(7-1)(11)=-23$
Thus, the sum of first 20 terms is
$$
S_{20}=dfrac{20}{2}[2(-23)+11(20-1)]=1630
$$
b.) 1400
c.) -1980
d.) 2570
e.) 2410
f.) 1630
$t_1+t_2+t_3+t_4+…$
is arithmetic series if the difference between consecutive terms is constant, that is,
$t_2-t_1=t_3-t_2=t_4-t_3=d$
$bold{Arithmetic;Series}$ The $n^{th}$ term of an arithmetic series $t_n$ with first term $t_1$ and common difference $d$ is
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
$t_n=1+(n-1)(5)=5n-4$
We shall determine which value of $n$ does $t_n=96$ correspond to
$96=5n-4implies n = 20$
The sum of the series is therefore
$S_n=dfrac{n}{2}(t_1+t_n)$
$$
S_{20}=dfrac{20}{2}(1+96)=970
$$
$t_n=24+(n-1)(13)=13n+11$
Since $t_n=349$, we shall find the value of $n$,
$349=13n+11implies n=dfrac{349-11}{13}=26$
The sum of the series is therefore
$$
S_{26}=dfrac{26}{2}(24+349)=4849
$$
$t_n=85+(n-1)(-8)=93-8n$
Since $t_n=-99$, we shall find the value of $n$,
$-99=93-8nimplies n =dfrac{93+99}{8}=24$
Thus, the sum of the series is therefore
$$
S_{24}=dfrac{24}{2}(85-99)=-168
$$
$t_n=5+(n-1)(3)=3n+2$
Since $t_n=2135$, we shall find the value of $n$,
$2135=3n+2implies n =dfrac{2135-2}{3}=711$
Thus, the sum of the series is therefore
$$
S_{711}=dfrac{711}{2}(5+2135)=760;770
$$
$t_n=-31+(n-1)(-7)=-7n-24$
Since $t_n=136$, we shall find the value of $n$,
$-136=-7n-24implies n =dfrac{136-24}{7}=16$
Thus, the sum of the series is therefore
$$
S_{16}=dfrac{16}{2}(-31-136)=-1336
$$
$t_n=-63+(n-1)(6)=6n-69$
Since $t_n=63$, we shall find the value of $n$,
$63=6n-69implies n =dfrac{69+63}{6}=22$
Thus, the sum of the series is therefore
$$
S_{22}=dfrac{22}{2}(-63+63)=0
$$
b.) 4849
c.) $-$168
d.) 760 770
e.) -1336
f.) 0
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
$d_4=2$
$d_5=5$
$d_6=9$
$$
d_7=14
$$
$d_4=2$
$d_5=2+3$
$d_6=2+3+4$
$d_7=2+3+4+5$
which appears to be an arithmetic series with $t_4=2$ and $d=1$.
From the general term
$t_n=t_1+(n-1)(d)$
We can obtain the first term as
$2=t_1+(4-1)(1)implies t_1=-1$
To find the number of diagonals as a function of $n$ sides, we can use the general term for arithmetic series.
$$
S_n=dfrac{n}{2}[2(-1)+(n-1)(1)]=dfrac{n}{2}(n-3)
$$
$S_7=dfrac{7}{2}(7-3)=14$
We can confirm this by sketching the figure$.$
b.) 14 diagonals
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
We can model the accumulated investment (with simple annual interest) as an arithmetic series with $t_1=1000$ and $d=63$
At the start of fifth year, the account value shall be
$S_5=dfrac{5}{2}[2(1000)+(5-1)(63)]=$5,630.00$
The account value at the start of $5^{th}$ year is $boxed{bold{$5,630.00}}$
$5,630.00
$$
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
$S_n=dfrac{n}{2}[2t_1+(n-1)d]$
$S_{15}=dfrac{15}{2}[2(4.9)+(15-1)(9.8)]=1,102.5$ m
Therefore, Chandra covered a total distance of $boxed{bold{1,102.5;m}}$ within 15 seconds before the parachute was released.
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
$t_n=t_1+(n-1)(d)$
$137=t_1+(20-1)(3)implies t_1=80$
To calculate the total toys that Jamal assembled in his first 20 days, evaluate $S_{20}$
$S_{20}=dfrac{20}{2}[2(80)+(20-1)(3)]=2170$
Therefore, a total of $boxed{bold{2,170 ;toys}}$ was assembled in Jamal’s first 20 days.
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
We need to find the value of $d$
$t_n=t_1+(n-1)d$
$105=200+(20-1)(d)$
$d=-5$
The total time for the first 20 levels is
$S_{20}=dfrac{20}{2}[2(200)+(20-1)(-5)]=boxed{bold{3050;seconds}}$
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
To know the total distance that Sara covered in her first 10 weeks, we shall use the formula for the sum of arithmetic series,
$S_n=dfrac{n}{2}[2t_1+(n-1)d]$
$S_{10}=dfrac{10}{2}[2(25)+(10-1)(10)]=700$
Therefore, Sara covered a total of $boxed{bold{700; km}}$ in her $10^{th}$ week.
In the first representation, the width is $n$ and the length is $t_1+t_n$, therefore
$S_n=dfrac{1}{2}(n)(t_1+t_n)$
In the second representation, the width is $n$ and the length is $2t_1+(n-1)d$. In this example, $n=5$ which results in $2t_1+(5-1)(d)$ which leads to
$$
S_n=dfrac{1}{2}n[2t_1+(n-1)d]
$$
Detailed illustration has been shown in the answers.
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
Using the formula for arithmetic series mentioned above
$34=t_1+(10-1)(d)$
$710=dfrac{20}{2}[2t_1+(20-1)(d)]$
Substitute $t_1=34-9d$ from the first equation to the 2nd equation
$710=10cdot [2(34-9d)+19d]implies 710=20(34-9d)+190d$
$710=680-180d+190dimplies 10d=30implies d=3$
Then, we can find $t_1$ from the first equation
$t_1=34-9(3)=7$
Now we have $t_1=7$ and $d=3$ which we can use to get the general term
$t_n=7+(n-1)(3)=3n+4$
The 25th term can be calculated as
$t_{25}=3(25)+4=79$
Therefore, the 25th term is $boxed{bold{79}}$
t_{25}=79
$$
$t_n=t_1+(n-1)d$
The sum of the first $n$ terms is
$S_n=dfrac{n}{2}(t_1+t_n)=dfrac{n}{2}[;2t_1+(n-1)d;]$
We need to find $n$ such that $S_n=1001$. Hence, we shall substitute this values to the expression for $S_n$
$S_n=dfrac{n}{2}[2t_1+(n-1)d]$
$1001=dfrac{n}{2}[2(1)+(n-1)(3)]$
$n(3n-1)=1001cdot 2$
$3n^2-n-2002=0$
This is a quadratic equation that we can factor
$(n-26)(3n+77)=0$
$n=26$ or $n=-dfrac{77}{3}$
Since $n$ can only take positive discrete values, we shall consider
$n=26$
Therefore, there are $boxed{bold{26;terms}}$ in the series.