All Solutions
Section 7-1: Arithmetic Sequences
$5-1=4$
$9-5=4$
$13-9=4$
$17-13=4$
A common difference of 4 is observed. Hence, it is $bold{arithmetic}$.
$7-3=4$
$13-7=6$
$17-13=4$
$23-17=6$
$27-23=4$
An alternating difference of $4$ and $6$ is observed. Hence, it is $bold{not;arithmetic}$.
$6-3=3$
$12-6=6$
$24-12=12$
The difference between consecutive terms varies. Hence, it is $bold{not; arithmetic}$.
$48-59=-11$
$37-48=-11$
$26-37=-11$
$15-26=-11$
A common difference of -11 is observed. Hence, it is $bold{arithmetic}$
b.) not arithmetic
c.) not arithmetic
d.) arithmetic
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$t_1;; ; ;;t_n=t_{n-1}+d$ where $n>1$
General term:
$t_n=28+(n-1)(14)$
$t_n=28+14n-14$
$t_n=14+14n$
Recursive formula:
$t_1=28; ;;t_n=t_{n-1}+14$ where $n>1$
General term:
$t_n=53+(n-1)(-4)$
$t_n=53-4n+4$
$t_n=57-4n$
Recursive formula:
$t_1=53; ; ;t_n=t_{n-1}-4$ where $n>1$
General term:
$t_n=-1+(n-1)(-110)$
$t_n=-1-110n+110$
$t_n=109-110n$
Recursive formula
$t_1=-1; ; ;t_n=t_{n-1}-110$ where $n>1$
b.) $t_n=57-4n$ , $t_1=53; ; ;t_n=t_{n-1}-4$ where $n>1$
c.) $t_n=109-110n$ , $t_1=-1; ; ;t_n=t_{n-1}-110$ where $n>1$
The common difference is
$d= t_2-t_1=t_3-t_2=t_4-t_3=t_n-t_{n-1}$
Thus, the next term can be obtained from the preceding term as
$$
t_n=t_{n-1}+d
$$
$t_{11}=41$
We shall find the common difference
$d=t_{11}-t_{10}=41-29=12$
Therefore,
$$
t_{12}=t_{11}+d=41+12=53
$$
t_{12}=53
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
We shall find the common difference
$d=102-85=17$
Thus, the general term is
$t_n=85+(n-1)(17)$
$t_n=85+17n-17$
$$
t_n=17n+68
$$
$t_{15}=17(15)+68$
$$
t_n=323
$$
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$t_1;; ; ;;t_n=t_{n-1}+d$ where $n>1$
(i) Notice that there is a common difference of 3 between consecutive terms. Thus, it is arithmetic.
(ii) $t_1=8$ , $d=3$
General term:
$t_n=8+(n-1)(3)$
$t_n=8+3n-3$
$t_n=3n+5$
(iii) Recursive formula
$t_1=8$ ; $t_n=t_{n-1}+3$ where $n>1$
(i) A common difference of $d=11$ is observed with $t_1=23$. It is an arithmetic sequence.
(ii) The general term is
$t_n=23+(n-1)(11)$
$t_n=23+11n-11$
$t_n=11n+12$
The recursive formula is
$t_1=23$ ; $t_n=t_{n-1}+11$ where $n>1$
(ii) The general term is
$t_n=dfrac{1}{6}+(n-1)cdot dfrac{1}{6}$
$t_n=dfrac{1}{6}+dfrac{1}{6}n-dfrac{1}{6}$
$t_n=dfrac{n}{6}$
(iii) The recursive formula is
$t_1=dfrac{1}{6}$ ; $t_n=t_{n-1}+dfrac{1}{6}$ ; where $n>1$
b.) not arithmetic
c.) not arithmetic
d.) not arithmetic
e.) $t_n=11n+12$ , $t_1=23$ ; $t_n=t_{n-1}+11$ where $n>1$
f.) $t_n=dfrac{n}{6}$ ; $t_1=dfrac{1}{6}$ ; $t_n=t_{n-1}+dfrac{1}{6}$ where $n>1$
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$t_1;; ; ;;t_n=t_{n-1}+d$ where $n>1$
(i) Notice that there is a common difference of 8 between consecutive terms. Thus, it is arithmetic.
(ii) $t_1=19$ , $d=8$
General term:
$t_n=19+(n-1)(8)$
$t_n=19+8n-8$
$t_n=8n+11$
(iii) Recursive formula
$t_1=19$ ; $t_n=t_{n-1}+8$ where $n>1$
(i) Notice that there is a common difference of -5 between consecutive terms. Thus, it is arithmetic.
(ii) $t_1=4$ , $d=-5$
General term:
$t_n=4+(n-1)(-5)$
$t_n=4-5n+5$
$t_n=9-5n$
(iii) Recursive formula
$t_1=4$ ; $t_n=t_{n-1}-5$ where $n>1$
(i) Notice that there is a common difference of 5 between consecutive terms. Thus, it is arithmetic.
(ii) $t_1=21$ , $d=5$
General term:
$t_n=21+(n-1)(5)$
$t_n=21+5n-5$
$t_n=16+5n$
(iii) Recursive formula
$t_1=21$ ; $t_n=t_{n-1}+5$ where $n>1$
(i) Notice that there is a common difference of $-12$ between consecutive terms. Thus, it is arithmetic.
(ii) $t_4=35$ , $d=-12$
Find the first term.
$35=t_1+(4-1)(-12)$
$$
35=t_1-36
$$
$t_1=71$
General term:
$t_n=71+(n-1)(-12)$
$t_n=71-12n+12$
$t_n=83-12n$
(iii) Recursive formula
$t_1=71$ ; $t_n=t_{n-1}-12$ where $n>1$
b.) $t_n=9-5n$
c.) $t_n=5n+16$
d.) $t_n=83-12n$
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_1;; ; ;;t_n=t_{n-1}+d$ where $n>1$
The first 5 terms are
$t_1=13$
$t_2=13+14=27$
$t_3=27+14=41$
$t_4=41+14=55$
$$
t_5=55+14=69
$$
$t_1=5$
$t_2=3(5)=15$
$t_3=3(15)=45$
$15-5neq 45-15$
Thus, it is not an arithmetic sequence.
$t_1=4$
$t_2=4+2-1=5$
$t_3=5+3-1=7$
$5-4neq7-5$
Thus, it is not an arithmetic sequence.
$t_1=1$
$t_2=2(1)-2+2=2$
$t_3=2(2)-3+2=3$
$t_4=2(3)-4+2=4$
$t_5=2(4)-5+2=5$
A common difference of $d=1$ is observed, thus it is an arithmetic sequence.
The general term is
$t_n=t_1+(n-1)d$
$t_n=1+(n-1)(1)$
$t_n=n$
The first 5 terms are 1,2,3,4,5
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$t_1;; ; ;;t_n=t_{n-1}+d$ where $n>1$
Notice that there is a common difference of 5 between consecutive terms. Thus, it is arithmetic.
(i) $t_1=35$ , $d=5$
General term:
$t_n=35+(n-1)(5)$
$t_n=35+5n-5$
$t_n=5n+30$
(ii) Recursive formula
$t_1=35$ ; $t_n=t_{n-1}+35$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=5(11)+30=85
$$
Notice that there is a common difference of $-11$ between consecutive terms. Thus, it is arithmetic.
(i) $t_1=31$ , $d=-11$
General term:
$t_n=31+(n-1)(-11)$
$t_n=31-11n+11$
$t_n=42-11n$
(ii) Recursive formula
$t_1=31$ ; $t_n=t_{n-1}+31$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=42-11(11)=-79
$$
Notice that there is a common difference of $-12$ between consecutive terms. Thus, it is arithmetic.
(i) $t_1=-29$ , $d=-12$
General term:
$t_n=-29+(n-1)(-12)$
$t_n=-29-12n+12$
$t_n=-17-12n$
(ii) Recursive formula
$t_1=-29$ ; $t_n=t_{n-1}-12$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=-17-12(11)=-149
$$
Notice that there is a common difference of $0$ between consecutive terms. Thus, it is arithmetic.
(i) $t_1=11$ , $d=0$
General term:
$t_n=11+(n-1)(0)$
$t_n=11$
(ii) Recursive formula
$t_1=11$ ; $t_n=t_{n-1}$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=11
$$
Notice that there is a common difference of $1/5$ between consecutive terms. Thus, it is arithmetic.
(i) $t_1=1$ , $d=1/5$
General term:
$t_n=1+(n-1)left(dfrac{1}{5}right)$
$t_n=1+dfrac{1}{5}n-dfrac{1}{5}$
$t_n=dfrac{1}{5}n+dfrac{4}{5}$
(ii) Recursive formula
$t_1=1$ ; $t_n=t_{n-1}+dfrac{1}{5}$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=dfrac{1}{5}(11)+dfrac{4}{5}=3
$$
Notice that there is a common difference of $0.17$ between consecutive terms. Thus, it is arithmetic.
(i) $t_1=0.4$ , $d=0.17$
General term:
$t_n=0.4+(n-1)(0.17)$
$t_n=0.4+0.17n-0.17$
$t_n=0.17n+0.23$
(ii) Recursive formula
$t_1=0.4$ ; $t_n=t_{n-1}+0.17$ where $n>1$
(iii) We shall find the eleventh term $t_{11}$
$$
t_{11}=0.17(11)+0.23=2.1
$$
b.) $t_{11}=-79$
c.) $t_{11}=-149$
d.) $t_{11}=11$
e.) $t_{11}=3$
f.) $t_{11}=2.1$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$y=mx+b$
where $m$ = slope and $b$ = y-intercept
The first 5 terms are
$t_1=8-2(1)=6$
$t_2=8-2(2)=4$
$t_3=8-2(3)=2$
$t_4=8-2(4)=0$
$t_5=8-2(5)=-2$
The common difference is $-2$
$t_1=dfrac{1}{4}cdot 1+dfrac{1}{2}=dfrac{3}{4}$
$t_2=dfrac{1}{4}cdot 2+dfrac{1}{2}=1$
$t_3=dfrac{1}{4}cdot 3 +dfrac{1}{2}=dfrac{5}{4}$
$t_4=dfrac{1}{4}cdot 4+dfrac{1}{2}=dfrac{3}{2}$
$t_5=dfrac{1}{4}cdot 5 +dfrac{1}{2}=dfrac{7}{4}$
The common difference is $dfrac{1}{4}$
b.) not arithmetic
c.) arithmetic with $d =dfrac{1}{4}$
d.) not arithmetic
$d=34-27=41-34=7$
Thus, it is arithmetic sequence.
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_n=27+(n-1)(7)$
$t_n=27+7n-7$
$$
t_n=7n+20
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
$$
t_{10}=7(10)+20=90
$$
$181=27+(n-1)(7)$
$n=dfrac{1}{7}(181-27)+1=23$
The opera house has 23 rows.
Use the formula for general term.
b.) $n=23$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
In this case, $t_1=9.25$, $d=0.15$, we will find $n$
$18.50=9.25+(n-1)(0.15)$
$n=dfrac{1}{0.15}(18.50-9.25)+1=62dfrac{2}{3}$
Therefore, her salary will be at least double on her 63$^{rd}$ month.
Here, we can apply the formula for arithmetic sequence.
$t_n=t_1+(n-1)d$
In this case,
$t_1=5,000$ , $t_n=7,800$ , $d=175$, and we need to find $n$.
$7;800=5;000+(n-1)(175)$
$n=dfrac{1}{175}(7800-5000)+1=17$
Thus, his account will reach $7;800$ on the $17^{th}$ year or after $16$ years
$$
t_2-t_1=t_3-t_2=t_4=t_3=t_n-t_{n-1}
$$
$t_n=t_1+(n-1)d$
where
$t_n=n^{th}$ term
$t_1=$ first term
$d$ = common difference
Notice that there is a common difference of 2 between consecutive terms. Thus, it is arithmetic sequence with $t_1=7$ , $d=2$
General term:
$t_n=7+(n-1)(2)$
$t_n=7+2n-2$
$t_n=2n+5$
If 63 is the last term, we shall find how many terms are present
$63=2(n)+5$
$n=dfrac{1}{2}(63-5)=29$
Thus, the sequence contains 29 terms.
Notice that there is a common difference of $-5$ between consecutive terms. Thus, it is arithmetic sequence with $t_1=-20$ , $d=-5$
General term:
$t_n=-20+(n-1)(-5)$
$t_n=-15-5n$
If $-205$ is the last term, we shall find how many terms are present
$-205=-15-5n$
$n=dfrac{1}{5}(205-15)=38$
Thus, the sequence contains 38 terms.
Notice that there is a common difference of $-4$ between consecutive terms. Thus, it is arithmetic sequence with $t_1=31$ , $d=-4$
General term:
$t_n=31+(n-1)(-4)$
$t_n=35-4n$
If $-25$ is the last term, we shall find how many terms are present
$-25=35-4n$
$n=dfrac{1}{4}(35+25)=15$
Thus, the sequence contains 15 terms.
Notice that there is a common difference of $7$ between consecutive terms. Thus, it is arithmetic sequence with $t_1=9$ , $d=7$
General term:
$t_n=9+(n-1)(7)$
$t_n=7n+2$
If $100$ is the last term, we shall find how many terms are present
$100=7n+2$
$n=dfrac{1}{7}(100-2)=14$
Thus, the sequence contains 14 terms.
Notice that there is a common difference of $7$ between consecutive terms. Thus, it is arithmetic sequence with $t_1=-33$ , $d=7$
General term:
$t_n=-33+(n-1)(7)$
$t_n=7n-40$
If $86$ is the last term, we shall find how many terms are present
$86=7n-40$
$n=dfrac{1}{7}(86+40)=18$
Thus, the sequence contains 18 terms.
Notice that there is a common difference of $-9$ between consecutive terms. Thus, it is arithmetic sequence with $t_1=28$ , $d=-9$
General term:
$t_n=28+(n-1)(-9)$
$t_n=37-9n$
If $-44$ is the last term, we shall find how many terms are present
$-44=37-9n$
$n=dfrac{1}{9}(37+44)=9$
Thus, the sequence contains 9 terms.
b.) $n=38$
c.) $n=15$
d.) $n=14$
e.) $n=18$
f.) $n=9$
$$
t_n=t_1+(n-1)(d)
$$
$t_8=t_1+(8-1)d$
$t_4=t_1+(4-1)d$
Find the difference between $t_8$ and $t_4$
$t_8 – t_4=(t_1-t_1)+(7-3)d = 4d$
Thus, to obtain $t_8$ from $t_4$, we must add $4d$.
$$
t_{100}-t_8=(t_1-t_1)+(99-7)d=92d
$$
$$
t_n=t_1+(n-1)(d)
$$
$539=t_1+(93-1)d$
$238=t_1+(50-1)d$
Subtract the 1st and 2nd equation.
$$
539-238=(t_1-t_1)+(92-49)d implies d=dfrac{539-238}{92-49}=7
$$
$t_1=539-92(7)=-105$
Thus, the general term is
$t_n=-105+(n-1)(7)$
$$
t_n=-112+7n
$$
sequence 1: 10, 20, 30, 40, 50, 60, 70 …
sequence 2: 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 …
sequence 3: 60, 50, 40, 30, 20, 10, 0, $-$10 …
sequence 2: $d=5$
sequence 3: $d=-10$
The common difference must be a factor of both 20 and 50. In other words, both of them should be divisible by the common difference.
$t_n=t_1+(n-1)d$
$37=13+(j-1)(d)implies 24=(j-1)(d)implies (j-1)=dfrac{24}{d}$
$73=13+(k-1)(d)implies 60=(k-1)(d)implies (k-1)=dfrac{60}{d}$
In that case, $d$ could be $1,2,3,4,6, 12$
$d=1implies t_{100}=13+(100-1)(1)=112$
$d=2implies t_{100}=13+(100-1)(2)=211$
$d=3implies t_{100}=13+(100-1)(3)=310$
$d=4implies t_{100}=13+(100-1)(4)=409$
$d=6implies t_{100}=13+(100-1)(6)=607$
$$
d=12implies t_{100}=13+(100-1)(12)=1201
$$
112,; 211, ;310,;409,;607,;1201
$$
$t_n=t_1+(n-1)d$
We shall determine whether we would still get an arithmetic sequence if the $nth$ term of the new sequence is replaced by the $t_n^{th}$ of the original arithmetic sequence.
We shall let $k_n$ be the new arithmetic sequence.
$k_n=t_1+(n-1)(d)$
$k_n=t_1+[(t_1+(n-1)(d))-1](d)$
$k_n=t_1+t_1d+(n-1)(d^2)-d$
$$
k_n=(t_1+t_1d-d)+(n-1)d^2
$$