All Solutions
Section 6-6: Investigating Models of Sinusoidal Functions
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above are satisfied.}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
period: $T=90^circimplies k = dfrac{360}{90}=4$
amplitude: $A=dfrac{|8-4|}{2}=2$
equation of axis: $f(x)=dfrac{8+4}{2}=6$
Therefore, the equation is
$$
f(x)=2cos (4x)+6
$$
period: $T=180^circimplies k = dfrac{360}{180}=2$
amplitude: $A=dfrac{|3-1|}{2}=1$
equation of axis: $f(x)=dfrac{3+1}{2}=2$
Therefore, the equation is
$$
f(x)=-cos(2x)+2
$$
period: $T=120^circimplies k = dfrac{360}{120}=3$
amplitude: $A=dfrac{|0-(-4)|}{2}=2$
equation of axis: $f(x)=c=dfrac{0+(-4)}{2}=-2$
Therefore, the equation is
$$
f(x)=2cos(3x)-2
$$
b) $f(x)=-cos(2x)+2$
c) $f(x)=2cos(3x)-2$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
Maximum occurs at $x=0$ ($y-$axis) $implies$ cosine function with $A>0$
period: $T=180^circimplies k=dfrac{360}{180}=2$
$y_{text{min}}=5$
$y_{text{max}}=9$
amplitude: $A=dfrac{|9-5|}{2}=2$
axis: $c=dfrac{9+5}{2}=7$
Using these information, the equation that describes the data is
$$
y=2cos(2x)+7
$$
y=2cos(2x)+7
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
$$
A=4implies c=9-4=5
$$
$T=120^circ implies k= dfrac{360^circ}{120^circ}=3$
maximum at $(0,9)implies$ cosine function with $A>0$
Thus, the equation is
$$
y=4cos(3x)+5
$$
y=4cos(3x)+5
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
(i) None of the conditions mentioned above applies, but notice that the minimum point would have touched the $y-$axis if it wasn’t translated 1 unit to the right. So here, we shall use cosine function with $A<0$ and $d=1$ (horizontally translated 1 unit to the right)
period = $6implies k=dfrac{360}{6}=60$
amplitude = $A=dfrac{8-2}{2}=3$
axis: $c=dfrac{8+2}{2}=5$
Therefore
$y=-Acos[k(x-d)]+c$
$$
y=-3cos[60(x-1)^circ]+5
$$
period = 3 $implies k=dfrac{360}{3}=120$
amplitude: $A=dfrac{1.5-0.5}{2}=0.5$
axis: $c=dfrac{1.5+0.5}{2}=1$
Therefore
$$
y=-0.5cos(120x)^circ+1
$$
period = $4implies k =dfrac{360}{4}=90$
amplitude: $A=dfrac{|-3-(-1)|}{2}=1$
axis: $c=dfrac{(-3)+(-1)}{2}=-1$
Therefore
$$
y=-sin(90x)^circ-1
$$
(i) The axis (half-way between maximum and minimum) touches the $y-$axis and is decreasing as it cross the $y-$axis. Thus, we shall use sine function with $A<0$
period = $4implies k =dfrac{360}{4}=90$
amplitude: $A=dfrac{|30-20|}{2}=5$
axis: $c=dfrac{(30)+(20)}{2}=25$
Therefore
$$
y=-sin(90x)^circ-1
$$
period: $T=3implies k=dfrac{360}{3}=120$
amplitude: $A=dfrac{|15-5|}{2}=5$
axis: $c=dfrac{15+5}{2}=10$
Therefore,
$$
y=5cos[120(x+1)^circ]+10
$$
period: $T=1implies k =360$
amplitude: $A=dfrac{5-(-15)}{2}=10$
axis: $c=dfrac{5-15}{2}=-5$
Therefore,
$$
y=10cos(360x)^circ-5
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
Maximum point occurs at the $y$-axis (at $x=0)$, thus, we shall use cosine function with $A>0$.
period = $120^circimplies k=dfrac{360}{120}=3$
amplitude = $A=dfrac{3-1}{2}=1$
axis: $c=dfrac{3+1}{2}=2$
Therefore
$$
y=cos(3x)^circ+2
$$
period = $720^circ implies k =dfrac{360}{720}=0.5$
amplitude = $A=dfrac{21-13}{2}=4$
axis: $c=dfrac{21+13}{2}=17$
The point halfway between maximum and minimum would have touched the $y$-axis in an increasing manner if it wasn’t translated 180$^circ$ to the right. Thus, we shall use sine function with $A>0$ and $d=180^circ$.
$y=4sin[0.5(x-180)^circ]+17$
Since the maximum point is located $360^circ$ to the right of $y$-axis, we can also use
$$
y=4cos[0.5(x-360)^circ]+17
$$
period = $180-(-60)=240implies k=dfrac{360}{240}=1.5$
amplitude= $A=dfrac{|-1-(-7)|}{2}=3$
axis: $c=dfrac{(-7)+(-1)}{2}=-4$
The point halfway between maximum and minimum crosses the $y-$intercept and is increasing as it crosses, thus we shall use sine function with $A>0$.
$$
y=3sin(1.5x)^circ-4
$$
period $=130-10=120implies k=dfrac{360}{120}=3$
amplitude = $A=dfrac{|5-(-1)|}{2}=3$
axis: $c=dfrac{5+(-1)}{2}=2$
The maximum point $(5,10^circ)$ is translated $10^circ$ to the right from the $y$-axis. Thus, we shall use cosine function with $A>0$ and $d=10$
$$
y=3cos[3(x-10)]+2
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
$k=dfrac{360^circ}{T}$
a) $k=dfrac{360}{360}=1implies y=3cos x+11$
b) $k=dfrac{360}{180}=2implies y=4cos[2(x-30)^circ]+15$
c) $k=dfrac{360}{40}=9implies y= 2cos[9(x-7)^circ]$
d) $k=dfrac{360}{720}=0.5implies y= 0.5cos[0.5(x+56)^circ]-3$
b) $y=4cos[2(x-30)^circ]+15$
c) $y=2cos[9(x-7)^circ]$
d) $y=0.5cos[0.5(x+56)^circ]-3$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
The minimum value is $(0,1)$ so the minimum point touches the $y$-axis. Thus, we shall use cosine function with $A<0$
Therefore
$$
y=-6cos(8x)^circ+7
$$
y=-6cos(8x)+7
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
amplitude = $A=dfrac{17-(-18.6)}{2}=17.8$
axis: $c=dfrac{17+(-18.6)}{2}=-0.8$
The minimum point touches the $y$-intercept, so it is a cosine function with $A<0$
$$
y=-17.8cos(30x)-0.8
$$
$y=-17.8cos[30(20)]-0.8$
$$
y=8.1
$$
b) trigonometric function, cosine function
c) $y=-17cos(30x)-0.8$
d) $y=8.1$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
b) The graph can be created as follows from the given points.
amplitude: $A=dfrac{0.85-0}{2}=0.425$
axis: $c=dfrac{0.85+0}{2}=0.425$
period: $T=3implies k =dfrac{360}{3}=120$
The minimum point is the $y$-intercept, so we can use cosine function with $A<0$
$y=-0.425cos(120t)+0.425$
c)
e) The time that corresponds to $v=0.5$ L/s is
b) $y=-0.425cos(120t)^circ+0.425$
c) see graph
d) $0$ L/s
e) $t=0.835s,; 2.165s,; 3.835s$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
b)
Athens: $y_{min}=12$ , $y_{max}=33$
amplitude = $A=dfrac{|33-12|}{2}=10.5$
axis: $c=dfrac{33+12}{2}=22.5$
$y=-10.5cos(30t)^circ+22.5$
Lisbon: $y_{min}=13$ , $y_{max}=27$
amplitude: $A=dfrac{|27-13|}{2}=7$
axis: $c=dfrac{27+13}{2}=30$
$y=-7cos(30t)^circ+30$
Moscow: $y_{min}=-9$ , $y_{max}=23$
amplitude: $A=dfrac{|23-(-9)|}{2}=16$
axis: $y=dfrac{23+(-9)}{2}=7$
$$
y=-16cos(30t)^circ+7
$$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
From the graph
amplitude = $A=11-8=3$
axis: $c=8$
period = $0.04implies k =dfrac{360^circ}{0.04}=9000$
Therefore, the equation that describes the graph is
$$
y=3sin(9000t)^circ+8
$$
c) We shall find the value of $y$ when $t=0.143$
$y=3sin(9000cdot 0.143)^circ+8approx 6.64$ MPa
b) maximum stress on the shaft
c) 6.64 MPa
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{cosine function: the maximum or minimum point is the $y-$intercept}} hfill \
{text{If the maximum point touches the $y$-intercept, A $>$ 0}} hfill \
{text{If the minimum point touches the $y$-intercept, A$$ 0}}hfill \
{text{If the graph is decreasing as it crosses $y-$axis, A $<$ 0}}hfill \\
{text{If none of the above conditions is satisfied}} hfill \
{text{perform necessary horizontal translations}} hfill \
{text{so that one of the conditions above is satisfied.}}hfill \\
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
The amplitude correspond to the radius of the tire, which is $r=dfrac{60text{}}{2}=30$ cm
Since the ground is at $y=0$, the axis is the height of the center of the wheel from the ground which is also the radius, thus, $c=30$
The period is the distance traveled in one revolution is equal to the circumference of the wheel which is
$T=60pi implies k=dfrac{360^circ}{60pi}approx1.90986$.
Therefore, the equation describing the height of the nail as a function of time is
$y=-30cos(1.90986 x)^circ+30$
Thus, at $x=1;text{km}times dfrac{1000;text{m}}{1;text{km}}times dfrac{100;text{cm}}{1;text{m}}=1times 10^5$ cm
$y=-30cos(1.90986times 10^5)+30=59.84$ cm
Therefore, when the car traveled 1 km, the nail is 59.84 cm from the ground.
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
The amplitude correspond to the radius of the tire, which is $r=dfrac{60text{}}{2}=7$ m
Since the boarding height of the wheel is 1m, the axis is the radius of the wheel plus 1 m, which means $c=8$.
The period is the time it takes for one revolution which is equal to the circumference of the wheel divided by the speed (10 km/h) which we shall convert to m/s.
$T=dfrac{2pi times 7;text{m}}{10,000;text{m}/h times dfrac{1;text{h}}{3600;text{s}}}=15.83$ s
This means $k=dfrac{360}{15.83}=22.74$
Therefore
$y=7cos(22.74t)^circ+8$ where $y$ is in meters and $t$ is in seconds
y=7cos(22.74t)^circ+8
$$