All Solutions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching, multiplies\ the amplitude by $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression, divides\ the period by $k$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
(1) horizontally compress by a factor of 4
(2) translate 2 units up
(1) divide the amplitude by 4
(2) translate 20$^circ$ to the right
(1) reflect over $x$-axis
(2) horizontally stretch by a factor of 2
(1) horizontally compress by a factor of 18
(2) vertically stretch by a factor of 12
(3) translate 3 units upward
(1) reflect over $x$-axis
(2) horizontally stretch by a factor of 3
(3) vertically stretch by a factor of 20
(4) horizontally translate 40$^circ$ to the right
\
{mathbf{Useful}}{text{ }}{mathbf{Definitions}} hfill \
{text{equation of the axis: }},,y = frac{{{y_{max }} + {y_{min }}}}{2} hfill \
{text{amplitude: }}A = {text{ }}frac{{left| {{y_{max }} – {y_{min }}} right|}}{2} hfill \
hfill \
{text{For a sinusoidal function}} hfill \
hfill \
y = Acos left( {kx} right) + B{text{ or }}y = Asin left( {kx} right) + B hfill \
hfill \
{text{amplitude = }}A hfill \
{text{period = }}frac{{{{360}^ circ }}}{k} hfill \
{text{equation of axis:}}{text{ }},,,y = B hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R};|}{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R};|}{text{ }}{y_{{text{min}}}} leq y leq {y_{{text{max}}}}} right} hfill \
hfill \
hfill \
end{gathered} ]
period = $dfrac{360^circ}{3}=120^circ$
amplitude = $4$
equation of the axis: $f(x)=6$
domain: ${ xin bold{R};|;0leq x leq 360^circ}$
$f(x)_{min}=6-4=2$, $f(x)_{max}=6+4=10$
range: ${ f(x) in bold{R};|;2leq f(x)leq 10}$
amplitude = $4$
equation of axis: $f(x)=6$
domain: ${ xin bold{R};|;0leq x leq 360^circ}$
range: ${ f(x) in bold{R};|;2leq f(x)leq 10}$
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching, multiplies\ the amplitude by $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression, divides\ the period by $k$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
Starting from the graph of $y=sin x$
(1) Horizontally compress by a factor of 2 (divide the period by 2)
(2) Vertically stretch by a factor of 5 (multiply the amplitude by 5)
(3) Horizontally translate $30^circ$ to the right
(4) Vertically translate 4 units upward
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching, multiplies\ the amplitude by $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression, divides\ the period by $k$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
(1) reflect over $x$-axis
(2) vertically stretch by a factor of 2 (multiply amplitude by 2)
(3) horizontally translate $10^circ$ to the left.
(1) horizontally compress by a factor of 5 (divide the period by 5)
(2) vertically translate upwards by 7
(1) horizontally compress by a factor of 2 (divide the period by 2)
(2) vertically stretch by a factor of 9 (multiply the amplitude by 9)
(3) horizontally translate 6 units to the left
(4) vertically translate 5 units downward
(1) vertically compress by a factor of 5 (divide the amplitude by 5)
(2) horizontally translate $15^circ$ to the right
(3) vertically translate 1 unit upwards
(1) reflect over x-axis
(2) horizontally stretch by a factor of 4 (multiply the period by 4)
(3) horizontally translate $37^circ$ to the left
(4) vertically translate 2 units downward
(1) reflect over $x$-axis
(2) horizontally compress by a factor of 3 (divide the period by 3)
(3) vertically translate 22 units upward
{text{For a sinusoidal function}} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}A hfill \
{text{period = }}frac{{{{360}^ circ }}}{k} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
end{gathered} ]
The period must be $T=dfrac{360^circ}{2}=180^circ$
With this information, the answer is graph (ii)
The period must be $T=dfrac{360^circ}{3}=120^circ$
With this information, the answer is graph (iii)
The period must be $T=dfrac{360^circ}{1/2}=720^circ$
With this information, the answer is graph (i)
b) iii
c) i
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R}};|;{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R}};|;{text{ }}c – |A| leq y leq c + |A|} right} hfill \
hfill \
hfill \
end{gathered} ]
a) $y=3sin x +2$
period : $T=dfrac{360^circ}{1}=360^circ$
amplitude: $A=3$
equation of the axis: $y=2$
$nT=3times 360^circ=1080^circ$
$c-|A|=2-3=-1$
$c+|A|=2+3=5$
domain: ${ x in bold{R};|;0^circ leq x leq 1080^circ}$
range: ${ y in bold{R};|;-1leq y leq 5}$
period : $T=dfrac{360^circ}{2}=180^circ$
amplitude: $|A|=4$
equation of the axis: $g(x)=7$
$nT=3times 180^circ=540^circ$
$c-|A|=7-4=3$
$c+|A|=7+4=11$
domain: ${ x in bold{R};|;0^circ leq x leq 540^circ}$
range: ${ g(x) in bold{R};|;3leq g(x) leq 11}$
period : $T=dfrac{360^circ}{1}=360^circ$
amplitude: $|A|=dfrac{1}{2}$
equation of the axis: $h=-5$
$nT=3times 360^circ=1080^circ$
$c-|A|=-5-dfrac{1}{2}=-dfrac{11}{2}$
$c+|A|=-5+dfrac{1}{2}=-dfrac{9}{2}$
domain: ${ t in bold{R};|;0^circ leq t leq 1080^circ}$
range: ${ h in bold{R};|;-dfrac{11}{2}leq h leq -dfrac{9}{2}}$
period : $T=dfrac{360^circ}{4}=90^circ$
amplitude: $|A|=1$
equation of the axis: $y=-9$
$nT=3times 90^circ=270^circ$
$c-|A|=-9-1=-10$
$c+|A|=-9+1=-8$
domain: ${ t in bold{R};|;0^circ leq x leq 270^circ}$
range: ${ h(x) in bold{R};|;-10leq h(x) leq -8}$
period : $T=dfrac{360^circ}{180}=2^circ$
amplitude: $|A|=10$
equation of the axis: $d=-30$
$nT=3times 2^circ=6^circ$
$c-|A|=-30-10=-40$
$c+|A|=-30+10=-20$
domain: ${ t in bold{R};|;0^circleq x leq 6^circ}$
range: ${ d in bold{R};|;-40leq d leq -20}$
period : $T=dfrac{360^circ}{2}=180^circ$
amplitude: $|A|=0.5$
equation of the axis: $j(x)=0$
$nT=3times 180^circ=540^circ$
$c-|A|=0-0.5=-0.5$
$c+|A|=0+0.5=0.5$
domain: ${ t in bold{R};|;0^circleq x leq 540^circ}$
range: ${ j(x) in bold{R};|;-0.5leq j(x) leq 0.5}$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R}};|;{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R}};|;{text{ }}c – |A| leq y leq c + |A|} right} hfill \
hfill \
hfill \
end{gathered} ]
(1) vertically stretch by a factor of 2 (multiply amplitude by 2)
(2) Translate $2$ units upward
(1) reflect over $x$-axis
(2) vertically stretch by a factor of 3 (multiply amplitude by 3)
(3) vertically translate upwards by 5
(1) reflect over $x-$axis
(2) horizontally compress by a factor of 6 (divide period by 6)
(3) vertically translate upwards by 4
(1) horizontally compress by a factor of 2 (divide period by 2)
(2) vertically stretch by a factor of 4 (multiply amplitude by 4)
(3) vertically translate downwards by 3
(1) vertically compress by a factor of 2 (multiply amplitude by 0.5)
(2) horizontally compress by a factor 3 (divide period by 3)
(3) horizontally translate to the right by $120^circ$
(1) reflect over x-axis and horizontally stretch by a factor of 2
(2) horizontally translate by $50^circ$
(3) vertically stretch by a factor of 8 (multiply amplitude by 8)
(4) vertically translate downwards by 9
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R}};|;{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R}};|;{text{ }}c – |A| leq y leq c + |A|} right} hfill \
hfill \
hfill \
end{gathered} ]
We will arbitrarily set the origin as the initial point.
$T=dfrac{360^circ}{2}=180^circ$
$c-|A|=6-1=5$
$c+|A|=6+1=7$
Therefore, the settings must be
$x_{min}leq 0$ , $x_{max}geq 180^circ$
$y_{min}leq 5$ , $y_{max}geq 7$
$T=dfrac{360^circ}{1/2}=720^circ$
$c-|A|=20-5=15$
$c+|A|=20+5=25$
Therefore, the settings must be
$x_{min}leq 0$ , $x_{max}geq 720^circ$
$y_{min}leq 15$ , $y_{max}geq 25$
$T=dfrac{360^circ}{1/2}=720^circ$
$c-|A|=82-7=75$
$c+|A|=82+7=89$
Therefore, the settings must be
$x_{min}leq 0$ , $x_{max}geq 720^circ$
$y_{min}leq 15$ , $y_{max}geq 25$
$$
T=dfrac{360}{360}=1
$$
$c-|A|=-27-0.5=-27.5$
$c+|A|=-27+0.5=-26.5$
Therefore, the settings must be
$x_{min}leq 0$ , $x_{max}geq 1^circ$
$y_{min}leq -27.5$ , $y_{max}geq 26.5$
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
& Settings \ hline
a) & begin{tabular}[c]{@{}l@{}}$x_{min}leq 0^circ$ , $x_{max}geq 180^circ$\ $y_{min}leq 5$ , $y_{max}geq 7$end{tabular} \ hline
b) & begin{tabular}[c]{@{}l@{}}$x_{min}leq 0^circ$ , $x_{max}geq 720^circ$\ $y_{min}leq 15$ , $y_{max}geq 25$end{tabular} \ hline
c) & begin{tabular}[c]{@{}l@{}}$x_{min}leq 0^circ$ , $x_{max}geq 720^circ$\ $y_{min}leq 15$ , $y_{max}geq 25$end{tabular} \ hline
d) & begin{tabular}[c]{@{}l@{}}$x_{min}leq 0^circ$ , $x_{max}geq 1^circ$\ $y_{min}leq -27.5$ , $y_{max}geq 26.5$end{tabular} \ hline
end{tabular}
end{table}
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R}};|;{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R}};|;{text{ }}c – |A| leq y leq c + |A|} right} hfill \
hfill \
hfill \
end{gathered} ]
a) The period is $T=dfrac{360}{300}=1.2$ s
This represents the time it takes for one breathe cycle.
b)
$c-|A|=100-20=80$
$c+|A|=100+20=120$
range: ${ P(t) in bold{R};|;80leq P(t)leq 120}$
The range represents the set of all possible values of blood pressure within the normal range.
b) ${ P(t) in bold{R};|;80leq P(t)leq 120}$
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c hfill \
hfill \
{text{If the function starts at }}x = {x_0}{text{ and goes through}},n{text{ cycles,}} hfill \
hfill \
{text{domain: }}left{ {x in {mathbf{R}};|;{text{ }}{x_0} leq x leq {x_0} + nT} right} hfill \
hfill \
{text{range: }}left{ {y in {mathbf{R}};|;{text{ }}c – |A| leq y leq c + |A|} right} hfill \
hfill \
hfill \
end{gathered} ]
The amplitude can be calculated as
$A=dfrac{|7-(-1)|}{2}=4$
The equation of axis is
$y=dfrac{-1+7}{2}implies y=3$
The period is $T=720^circ implies k=dfrac{360^circ}{720^circ}=0.5$
a) The equation of sine function is $y=4sin(0.5x)+3$
b) The equation of cosine function is $y=4cos(0.5x)+3$
b) $y=4cos(0.5x)+3$
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching, multiplies\ the amplitude by $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression, divides\ the period by $k$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
(1) Start by graphing $y=cos x$. It should be a sinusoidal graph passing through $(0,1)$ with period of $360^circ$, amplitude of 1, and axis at $y=0$.
(2)reflect the graph over $x-$axis
(3) Horizontally compress by a factor of 120, that is, divide the period by 120.
(4) Vertically compress by a factor of 2, that is, divide the amplitude by 2.
(5) Vertically translate upwards by 30
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching, multiplies\ the amplitude by $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression, divides\ the period by $k$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
defarraystretch{1.5}%
begin{tabular}{|c|c|}
hline
multicolumn{1}{|l|}{Month} & multicolumn{1}{l|}{Number of Days} \ hline
January & 31 \ hline
February & 28 \ hline
March & 31 \ hline
April & 30 \ hline
May & 31 \ hline
June & 30 \ hline
July & 31 \ hline
August & 31 \ hline
September & 30 \ hline
October & 31 \ hline
November & 30 \ hline
December & 31 \ hline
end{tabular}
end{table}
$D(t)=4sinleft[dfrac{360}{365}(t-80)right]^circ+12$
$D(80)=4sinleft[dfrac{360}{365}(80-80)right]^circ+12=12$
September 21 is the $365-(31+30+31+9)=264$th day of the year.
$D(264)=4sinleft[dfrac{360}{365}(264-80)right]^circ+12=11.89$
This days correspond to the spring and fall equinox (equal day and night).
$D(172)=4sinleft[dfrac{360}{365}(172-80)right]^circ+12=16$
This corresponds to the longest day or summer solstice.
December 21 is the 355th day of the year,
$D(355)=4sinleft[dfrac{360}{365}(355-80)right]^circ+12=8$
This corresponds to the shortest day or winter solstice.
b) 12 hrs, 11.89 hrs
c) 16 hrs, 8 hrs
d) see explanation inside