All Solutions
Section 6-2: Investigating the Properties of Sinusoidal Functions
{mathbf{Useful}}{text{ }}{mathbf{Definitions}} hfill \
{text{equation of the axis: }},,y = frac{{{y_{max }} + {y_{min }}}}{2} hfill \
{text{amplitude: }}A = {text{ }}frac{{left| {{y_{max }} – {y_{min }}} right|}}{2} hfill \
{text{period}} = left| {{x_2} – {x_1}} right| hfill \
end{gathered} ]
From the graph,.we can observe that
$y_{min}=-2$ and $y_{max}=4$
equation of the axis: $y=dfrac{4+(-2)}{2}implies y=1$
amplitude: $A=dfrac{4-(-2)}{2}=3$
period: $225^circ-45^circ=180^circ$
From the graph,.we can observe that
$y_{min}=-6$ and $y_{max}=2$
equation of the axis: $y=dfrac{2+(-6)}{2}implies y=-2$
amplitude: $A=dfrac{2-(-6)}{2}=4$
period: $720^circ-0^circ=720^circ$
a.) $h(x)=sin(5x)-1$ when $x=25^circ$
$$
h(x)=sin(5cdot 25)-1approx -0.1808
$$
We can plot $y=cos x$ and see which values of $x$ does the graph touches the line $y=0$ (x-axis).
Thus, within the given interval, $x=90^circ,;270^circ$
b) $90^circ$, $270^circ$
$$
h(t)=cos(36^circ t)
$$
c) At $t=35$, the cycle has gone 3 times plus additional 5 s. Thus, it is the same as when $t=5$ where the displacement is $h=-1$
d) We can approximate from the graph at $t=4$s, the displacement is $-0.8$m.
b) 10 s
c) $h=-1$m
d) $t=4$s
We need to find the coordinates of the point after rotating from the point $(2,0)$ counterclockwise with respect to the origin.
This is basically obtaining the point $(2cos 50^circ,2sin 50^circ)$.
Using your calculator, you should get $(1.286,1.532)$.
(1.286,1.532)
$$
Sinusoidal graphs are periodic graphs that are smooth and symmetrical waves created by transforming $y=cos x$ or $y=sin x$
a) The graph is periodic and sinusoidal.
By strict definition, a function $f(x)$ is periodic if there exists a non-zero period of $T$ such that
$f(x)=f(x+nT)$ where $n=$ non-zero integer
This property is satisfied by a horizontal line where $T$ could take any real non-zero value.
However, it is not sinusoidal because it is not composed of smooth repeating symmetrical curves.
b) neither periodic nor sinusoidal
c) periodic but not sinusoidal
d) neither periodic nor sinusoidal
e) periodic and sinusoidal
f) periodic but not sinusoidal
a) $g(90^circ)=sin 90^circ=1$
This means that if $(x,y)$ is a point on the unit circle, rotating counterclockwise by $90^circ$ from the positive $x$-axis would end up to a point with $y$-coordinate of 1.
b) $h(90^circ)=cos 90^circ=0$
This means that if $(x,y)$ is a point on the unit circle, rotating counterclockwise by $90^circ$ from the positive $x$-axis would end up to a point with $x$-coordinate of 0.
Thus, the resulting point is $(0,1)$ when rotated counterclockwise by $90^circ$ from positive $x$-axis.
$y=Asin (kx)+B$ or $y=Acos (kx)+B$\\
where\\
amplitude = $A$\\
period = $T$ = $dfrac{360^circ}{k}$ \\
equation of the axis: $y=B$\\
Increasing and decreasing intervals:\\
[begin{gathered}
{text{sine function}} hfill \
{text{inceasing: }} – frac{{{{90}^ circ }}}{k} + Tn leq x leq frac{{{{90}^ circ }}}{k} + Tn hfill \
{text{decreasing: }}frac{{{text{9}}{{text{0}}^ circ }}}{k} + Tn leq x leq frac{{{{270}^ circ }}}{k} + Tn hfill \
hfill \
{text{cosine function}} hfill \
{text{increasing: }}frac{{{text{18}}{{text{0}}^ circ }}}{k} + Tn leq x leq frac{{{{360}^ circ }}}{k} + Tn hfill \
{text{decreasing: }}{{text{0}}^ circ } + Tn,,, leq x, leq ,,,frac{{{{180}^ circ }}}{k} + Tn hfill \
end{gathered} ]\\
where $T$ is the period, $n$ is an integer.\\
amplitude = $A$ = 2
period = $360^circ$
equation of the axis: $y=3$
increasing at: $-90^circ+360^circ n leq x leq 90 + 360^circ n$
decreasing at: $90^circ +360^circ n leq x leq 270^circ+360^circ n$
where $n$ is an integer.
amplitude = $A=3$
period = $360^circ$
equation of the axis: $y=1$
increasing at: $-90^circ+360^circ n leq x leq 90 + 360^circ n$
decreasing at: $90^circ +360^circ n leq x leq 270^circ+360^circ n$
where $n$ is an integer.
amplitude = $A=1$
period = $T=dfrac{360}{0.5}=720$
equation of the axis: $y=2$
increasing at: $-180^circ+720^circ n leq x leq 180 + 720^circ n$
decreasing at: $180^circ +720^circ n leq x leq 540^circ+720^circ n$
where $n$ is an integer.
amplitude = $A=1$
period = $T=dfrac{360}{2}=180$
equation of the axis: $y=-1$
increasing at: $-45^circ+180^circ n leq x leq 180 + 720^circ n$
decreasing at: $45^circ +180^circ n leq x leq 135^circ+180^circ n$
where $n$ is an integer.
amplitude = $A=3$
period = $T=dfrac{360}{0.5}=720$
equation of the axis: $y=3$
increasing at: $-180^circ+720^circ n leq x leq 180 + 720^circ n$
decreasing at: $180^circ +720^circ n leq x leq 540^circ+720^circ n$
where $n$ is an integer.
a.) $f(x)=cos ximplies f(35^circ)=cos 35^circ approx 0.8192$
b) $g(x)=sin(2x)implies g(10^circ)=sin(2cdot 10^circ)approx 0.3420$
c) $h(x)=cos(3x)+1=cos(3cdot 20^circ)+1=1.5$
From the graph, we see that $x=180^circ$
From the graph, we see that $x=270^circ$
b) $0.3420$
c) 1.5
d) $x=180^circ$
e) $x=270^circ$
x=-315^circ,;-135^circ, ;45^circ, ;225^circ
$$
$(x,y)implies (rcostheta, rsin theta)$
In this exercise, we are given with $r$ and $theta$, so we will simply substitute it as follows.
b) $r=5$ , $theta=80^circ$ $implies (5cdot cos 80^circ, 5cdot sin 80^circ) implies (0.8682,4.9240)$
c) $r=4$ , $theta=120^circ$ $implies (4cdot cos 120^circ, 4cdot sin 120^circ) implies (-2,2sqrt{3})$
d) $r=3$ , $theta=230^circ$ $implies (3cdot cos 230^circ, 3cdot sin 230^circ) implies (-1.9284, -2.2981)$
b) $(0.8682,4.9240)$
c) $(-2,2sqrt{3})$
d) $(-1.9284,-2.2981)$
$y=Asin (kx)+B$
or
$y=Acos (kx)+B$
where
amplitude = $A$
period = $T$ = $dfrac{360^circ}{k}$
equation of the axis: $y=B$
To graph $j$ cycles starting from $x=x_0$, we must end at $x=x_0+Tcdot j$
a) $T=4$ , $A=3$ , $y=5 implies y=3sin left(dfrac{360^circ}{4}xright)+5$
2 cycles $implies 0leq xleq 8$
3 cycles $implies 0leq xleq 60$
2 cycles $implies 0leq xleq 160$
a) $h(t)=5cos (18t)^circ$ represents the horizontal distance between Jim and the center at any time $t$.
Thus, $h(10)=5cos(-180)=-5$ means that Jim is 5 units to the left of the center at 10 s.
b) Similarly, $h(t)=5sin(18t)^circ$ represents the vertical distance from the center. Thus, $h(10)=5sin (180^circ)$ is at the same height as the center of the Ferris wheel at 10s.
Both are periodic and sinusoidal function with the same amplitude $(A=1)$, period $(T=360^circ)$, and axis $(y=0)$.
Both contains the point $(45^circ,0.707)$ and $(225^circ, -0.707)$
$bf{Differences}$
The graph of $y=sin x$ passes through the $y$-axis at the origin $(0,0)$ while $y=cos x$ passes through $(0,1)$. The graph of $y=cos x$ is horizontally translated by $90^circ$ from the graph of $y=sin x$.
You can visualize the problem by sketching the figure as follows.
Remember that $y=sin theta$ represents the vertical distance of the nail from the center of the wheel. Since the center is now shifted $0.5$ m above the water level, the function describing the nails height from the water level is
$$
y=sin theta+0.5
$$
y=sin theta +0.5
$$
b) see graph inside
c) The model is a transformation of cosine function.
d) the maximum displacement from the resting position