All Solutions
Section 5-7: The Cosine Law
$c^2=7^2+4^2-2(7)(4)cos 62$
$c^2=49+16-26.3$
$c^2=38.7$
$c=sqrt{38.7}$
$$
c=6.2
$$
$c^2=12^2+9^2-2(12)(9)cos 125$
$c^2=144+81-(-123.8)$
$c^2=348.9$
$c=sqrt{348.9}$
$$
c=18.7
$$
$cos C=dfrac{(a^2+b^2)-c^2}{2ab}implies C=cos^{-1}left[dfrac{(a^2+b^2)-c^2}{2ab}right]$
where $c$ is the opposite side of $angle C$ and $a$ and $b$ are the other legs.
a) $theta=cos^{-1}left[ dfrac{(6^2+7^2)-4^2}{2(6)(7)}right]=35^circ$
b) $theta=cos^{-1}left[ dfrac{(4.7^2+5.2^2)-3.4^2}{2(4.7)(5.2)}right]=40^circ$
b) $40^circ$
a) $w^2=10.5^2+11.2^2-2(10.5)(11.2)cos 43^circ$
$w=sqrt{10.5^2+11.2^2-2(10.5)(11.2)cos 43^circ}=8.0$
$cos theta=dfrac{3^2+2^2-4^2}{2(3)(2)}$
$$
theta=cos^{-1}left(dfrac{3^2+2^2-4^2}{2(3)(2)}right)=104^circ
$$
$A=cos^{-1}left( dfrac{8.3^2+6.6^2-11.5^2}{2(8.3)(6.6)}right)=100^circ$
$p=sqrt{q^2+r^2-2qrcos P}$
$$
p=sqrt{25.1^2+71.3^2-2(25.1)(71.3)(1/4)}=69.4
$$
b) $104^circ$
c) $100^circ$
d) $69.4$
$LN^2=7.5^2+11.2^2-2(7.5)(11.2)cos 105^circ$
$LN=sqrt{.5^2+11.2^2-2(7.5)(11.2)cos 105^circ}$
$LN=m=15.0$ cm
Use sine law to find $angle L$
$dfrac{sin angle L}{11.2}=dfrac{sin 105^circ}{15}$
$L=sin^{-1}left(dfrac{11.2sin 105^circ}{15}right)=46^circ$
$$
angle N=180^circ-(105^circ+46^circ)=29^circ
$$
Use sine law to find $RS$
$dfrac{RS}{sin 28^circ}=dfrac{25.6}{sin 120^circ}$
$t=RS=dfrac{25.6sin 28^circ}{sin 120^circ}=13.9$ cm
Find $ST$ using cosine law
$ST^2=13.9^2+25.6^2-(2)(13.9)(25.6)cos 32^circ$
$ST=sqrt{13.9^2+25.6^2-(2)(13.9)(25.6)cos 32^circ}$
$ST=r= 15.7$ cm
$10^2=8^2+5^2-2(8)(5)cos A$
$A=cos^{-1}left(dfrac{8^2+5^2-10^2}{2(8)(5)}right)=97.9^circ=98^circ$
Use sine law to find $angle B$
$dfrac{sin B}{5}=dfrac{sin 97.9}{10}$
$B=sin^{-1}left(dfrac{5sin 97.9}{10}right)=29.68^circ=30^circ$
$$
angle C=180^circ-(98+30)^circ=52^circ
$$
Use sine law to find $XY$
$dfrac{XY}{sin 35^circ}=dfrac{18.7}{sin 124^circ}$
$XY=z=dfrac{18.7sin 35^circ}{sin 124^circ}=12.94=12.9$ cm
Use cosine law to find $XZ$
$XZ=y=sqrt{12.94^2+18.7^2-2(12.94)(18.7)cos 21^circ}=8.1$ cm
b) $angle R=32^circ$, $t=13.9$ cm, $r=15.7$ cm
c) $angle = 98^circ$ , $angle B=30^circ$, $angle C=52^circ$
d) $angle X=124^circ$ , $y=8.1$ cm , $z=12.9$ cm
$2^2=8^2+6.5^2-2(8)(6.5)cos theta$
$cos theta=dfrac{8^2+6.5^2-2(8)(6.5)}{2(8)(6.5)}$
$theta=cos^{-1}left(dfrac{8^2+6.5^2-2(8)(6.5)}{2(8)(6.5)}right)=11^circ$
The shot must be at $11^circ$ angle.
11^circ
$$
$t^2=h^2+b^2-2hbcos T$
$t^2=160^2+270^2-2(160)(270)cos 23^circ$
$t=sqrt{160^2+270^2-2(160)(270)cos 23^circ}$
$t=138$ m
We can see that
$angle ADC=180^circ-angle ADB$
$angle ADC=180^circ- 45^circ=135^circ$
Since the sum of angles in a triangle is always $180^circ$
$angle CAD=180^circ-135^circ-30^circ=15^circ$
Use sine law to find $AC$
$dfrac{AC}{sin 135^circ}=dfrac{1.0}{sin 15^circ}$
$AC=dfrac{1.0sin 135^circ}{sin 15^circ}=2.73$
We can now find $AB$ using cosine law
$AB^2=BC^2+AC^2-2(BC)(AC)cos C$
$AB^2=2^2+2.73^2-2(2)(2.73)cos 30^circ$
$AB=sqrt{2^2+2.73^2-2(2)(2.73)cos 30^circ}=1.4$ m
$angle FAB=70^circ-25^circ=45^circ$
$angle ABF=345^circ-(70+180)^circ=95^circ$
$$
angle AFB=180^circ-(95^circ+45^circ)=40^circ
$$
$dfrac{BF}{sin 45^circ}=dfrac{20.3}{sin 40^circ}$
$BF=dfrac{20.3sin 45^circ}{sin 40^circ}=22.33=22.3$ km
We can find $AF$ by either cosine or sine law. Here we’ll use cosine law.
$AF=sqrt{20.3^2+22.33^2-2(20.3)(22.33)cos 95^circ}=31.5$ km
Therefore, the fire is 31.5 km from tower A and 22.3 km from tower B.
$bold{Question}$ Two roads intersect at an angle of $15^circ$ as shown in the figure above. Darryl is standing at point D which is 270 m from the intersection. If his friend Mark is at point B and $angle ADB=110^circ$, how far is Mark from the intersection to the nearest meter?
$bold{Answer}$
The sum of angles in a triangle is always $180^circ$
$angle ABD=180^circ-(15^circ+110^circ)=55^circ$
Use sine law to find $AB$
$dfrac{AB}{sin 110^circ}=dfrac{270}{sin 55^circ}$
$AB=dfrac{270sin 110^circ}{sin 55^circ}=309.73=310$ m
Therefore, Mark is 310 m from the intersection.
$bold{Question}$ Two roads intersect at an angle of $15^circ$ as shown in the figure above. Darryl is standing at point D which is 270 m from the intersection. If his friend Mark is at point B and is 300 m from the intersection, how far is Mark from Darryl? Round your answers to the nearest meter.
$bold{Answer}$
Use cosine law to find $BD$
$BD^2=270^2+300^2-2(270)(300)cos 15^circ$
$BD=sqrt{270^2+300^2-2(270)(300)cos 15^circ}$
$BD=80$ m
Therefore, Mark is 80 m away from Darryl.
b) Two roads intersect at an angle of $15^circ$ as shown in the figure above. Darryl is standing at point D which is 270 m from the intersection. If his friend Mark is at point B and is 300 m from the intersection, how far is Mark from Darryl? Round your answers to the nearest meter.
$d^2=55.9^2+90^2-2(55.9)(90)cos(90-5.5)^circ$
$d=sqrt{55.9^2+90^2-2(55.9)(90)cos(90-5.5)^circ}$
$d=101.3$ m
(1) two sides and one included angle, such as: $a,b,$ and $angle C$
$c=sqrt{a^2+b^2-2abcos C}$
$b^2=a^2+c^2-2accos Bimplies B=cos^{-1}left(dfrac{a^2+c^2-b^2}{2ac}right)$
$A=180^circ-(B+C)$
(2) three sides, $a$, $b$, $c$
$C=cos^{-1}left(dfrac{a^2+b^2-c^2}{2ab}right)$
$B=cos^{-1}left(dfrac{a^2+c^2-b^2}{2ac}right)$
$$
A=180^circ-(B+C)
$$
(1) one angle and two sides, such as, $A, a, b$
$dfrac{sin A}{a}=dfrac{sin B}{b}implies B=sin^{-1}left(dfrac{bsin A}{a}right)$
$C=180-(A+B)$
$dfrac{c}{sin C}=dfrac{a}{sin A}implies c=dfrac{asin C}{sin A}$
(2) two angles and one side, $A$, $B$, and $c$
$C=180^circ-(A+B)$
$dfrac{sin C}{c}=dfrac{sin A}{a}implies a=dfrac{csin C}{sin A}$
$dfrac{b}{sin B}=dfrac{a}{sin A}implies b=dfrac{asin B}{sin A}$
b) one angle and two sides or two angles and one side
Use sine law to find $x$
$dfrac{x}{sin 20^circ}=dfrac{x+10}{sin 120^circ}$
$x(sin 120^circ)=(x+10)(sin 20)$
$0.866x=(x+10)(0.342)$
$x=dfrac{10(0.342)}{0.866-0.342}=6.53$ cm
$x+10=6.53+10=16.53$ cm
We can find the remaining side $s$ by cosine law
$s^2=x^2+(x+10)^2-2(x)(x+10)cos 40^circ$
$s^2=6.53^2+16.53^2-2(6.53)(16.53)cos 40^circ$
$s=sqrt{6.53^2+16.53^2-2(6.53)(16.53)cos 40^circ}=12.27$
The perimeter is
$6.53+16.53+12.27=35.33=35$ cm
defarraystretch{1.4}%
begin{tabular}{|l|l|l|}
hline
$angle A < 90^circ$ & $a<h$ & no triangle exists \ cline{2-3}
& $a=h$ & one right triangle \ cline{2-3}
& $h<b<a$ & one triangle \ cline{2-3}
& $h<a90^circ$ & $ab$ & one triangle \ hline
end{tabular}
end{table}
We see that
$5sin 45^circ=3.535 implies$ not possible
$10.0sin 45^circ=7.07>5 implies$ not possible
Thus, $5.0$ must be an included side of $45^circ$
We also know that $10$ can’t be the opposite side of $45^circ$ because this would mean that the angles opposite to $7.3$ and $5$ is smaller than $45^circ$ which is not possible (sum of angle must be 180$^circ$), therefore, the only possibility is that $7.3$ is the opposite of $45^circ$.
We can use cosine law to find the angle opposite to $10.0$ using the two other sides.
$10.0^2=5.0^2+7.4^2-2(5.0)(7.4)cos A$
$A=cos^{-1}left(dfrac{5.0^2+7.4^2-10.0^2}{2(5.0)(7.4)}right)=106^circ$
The side opposite to $5.0$ must then be $180^circ-(106+45)^circ=29^circ$.
(1) one angle is $70^circ$ and is opposite to $11.5$
(2) one angle is $70^circ$ is adjacent to $70^circ$
(3) two angles are $70^circ$ and are opposite to $11.5$
(4) two angles are $70^circ$ and are adjacent to $11.5$
We shall calculating the unknown component for each case.
(1) The other angles must be equal and can be obtained as $dfrac{180^circ-70^circ}{2}=55^circ$
$dfrac{x}{sin 55^circ}=dfrac{11.5}{sin 70^circ}implies x=dfrac{11.5sin55^circ}{sin 70^circ}=10.0$
(2) The other angles must be equal and can be obtained as $dfrac{180^circ-70^circ}{2}=55^circ$
The opposite side can be obtained using cosine law
$x=sqrt{11.5^2+11.5^2-2(11.5)(11.5)cos 70^circ}=13.2$
(3) The remaining angle must be $180^circ-2(70)^circ=40^circ$
The other side can be obtained from sine law
$dfrac{x}{sin 40^circ}=dfrac{11.5}{sin 70^circ}implies x=dfrac{11.5sin 40^circ}{sin 70^circ}=7.9$
(4) The remaining angle must be $180^circ-2(70)^circ=40^circ$
The other side can be obtained from sine law
$$
dfrac{x}{sin 70^circ}=dfrac{11.5}{sin 40^circ}implies x=dfrac{11.5sin 70^circ}{sin 40^circ}=16.8
$$
b) (i) $55^circ$, 10.0 cm
(ii) 55$^circ$, 13.2 cm
(iii) $40^circ$, $7.9$ cm
(iv) $40^circ$, $16.8$ cm
see sketches inside
Use sine law to find $AD$ using $angle ACD=25^circ$
$dfrac{AD}{sin 25^circ}=dfrac{2}{sin 55}$
$AD=1.03$ km
Use sine law to find $BD$ using $angle BCD=80^circ+25^circ$
$dfrac{BD}{sin(80+25)}=dfrac{2}{sin 55}$
$BD=2.36$ km
Use cosine law to find $AB$ using $angle ADB$ as included angle
$AB^2=AD^2+BD^2-2(AD)(BD)cos 80^circ$
$AB=sqrt{1.03^2+2.36^2-2(1.03)(2.36)cos 80^circ}$
$AB=2.4$ km
$d=ADsin 80^circ-BCsin 75^circ$
Find $BC$ by cosine law using $BD=2.36$ and $angle BDC=20^circ$
$BC=sqrt{2^2+2.36^2-2(2)(2.36)cos 20^circ}=0.836$
$d=ADsin 80^circ-BCsin 75^circ$
$d=1.03sin 80^circ-0.836sin75^circ=0.207 text{ km}=207$ m
$A$ is higher by $207$ m
*Note that the answer at the back of your textbook is $0.3$ km which is inaccurate. This has been corrected in the published errata.
b) $207$ m