Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Section 5-5: Trigonometric Identities

Exercise 1
Step 1
1 of 7
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 7
Here, we need to express each ratio in terms of $x$, $y$ and $r$

Remember that for a unit circle, $r=1$

$cos theta=dfrac{x}{r}=x$

$sintheta=dfrac{y}{r}=y$

$tan theta=dfrac{sin theta}{costheta}=dfrac{y}{x}$

The restrictions on $theta$ are its values that could make a denominator equal to zero.

Step 3
3 of 7
a)
L.S: $cot theta=dfrac{1}{tan theta}=dfrac{1}{y/x}=dfrac{x}{y}$

R.S: $dfrac{costheta}{sin theta}=dfrac{x}{y}$

Restrictions: $sin thetaneq 0$

$$
theta ne left{ {begin{array}{c}
{{0^{text{o}}} + {{360}^{text{o}}}n} \
{{{180}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 4
4 of 7
b)

L.S.: $tanthetacostheta=dfrac{y}{x}cdot x=y$

R.S.: $sin theta=y$

Restrictions: $cos thetaneq 0$

$$
theta ne left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 5
5 of 7
c)

L.S.: $csc theta=dfrac{1}{sin theta}=dfrac{1}{y}$

R.S.: $dfrac{1}{sin theta}=dfrac{1}{y}$

Restrictions: $sin thetaneq 0$

$$
theta ne left{ {begin{array}{c}
{{0^{text{o}}} + {{360}^{text{o}}}n} \
{{{180}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 6
6 of 7
d)

L.S.: $costhetacdot sec theta=xcdot dfrac{1}{x}=1$

R.S.: $1$

Restrictions: $cos thetaneq 0$

$$
theta ne left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Result
7 of 7
See proof inside.
Exercise 2
Step 1
1 of 6
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 6
a) Remember that $(a-b)(a+b)=a^2-b^2$

$(1-sin alpha)(1+sinalpha)=1-sin^2 alpha$

From the Pythagorean identity $sin^2theta+cos^2theta=1$

$$
1-sin^2alpha=cos^2alpha
$$

Step 3
3 of 6
b) Use $tan theta=dfrac{sin theta}{cos theta}$ and $dfrac{1}{cos theta}=sectheta$

$dfrac{tan alpha}{sin alpha}=dfrac{(sin alpha/cosalpha)}{sin alpha}=dfrac{1}{cos alpha}=sec theta$

Step 4
4 of 6
c) Use the Pythogorean identity $sin^2theta+cos^2theta=1$

$$
cos^2alpha+sin^2alpha=1
$$

Step 5
5 of 6
d) Use the quotient identity $cot theta=dfrac{costheta}{sin theta}$

$$
cot alpha cdot sin alpha=dfrac{cosalpha}{sinalpha}cdot sinalpha=cosalpha
$$

Result
6 of 6
a) $cos^2alpha$

b) $sectheta$

c) $1$

d) $cosalpha$

Exercise 3
Step 1
1 of 6
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 6
a) Remember that $a^2-b^2=(a+b)(a-b)$

$1-cos^2theta$

$=(1)^2-(costheta)^2$

$$
=(1-costheta)(1+costheta)
$$

Step 3
3 of 6
b) Remember that $a^2-b^2=(a+b)(a-b)$

$sin^2theta-cos^2theta$

$=(sin theta)^2-(costheta)^2$

$$
=(sintheta+costheta)(sintheta-costheta)
$$

Step 4
4 of 6
c) Remember that $a^2-2ab+b^2=(a-b)^2$

$sin^2theta-2sintheta+1$

$=(sintheta)^2-2(sintheta)(1)+(1)^2$

$$
=(sintheta-1)^2
$$

Step 5
5 of 6
d) Remember that $a-ab=a(a-b)$

$costheta-cos^2theta$

$$
=costheta(1-costheta)
$$

Result
6 of 6
a) $(1-costheta)(1+costheta)$

b) $(sintheta+costheta)(sintheta-costheta)$

c) $(sintheta-1)^2$

d) $costheta(1-costheta)$

Exercise 4
Step 1
1 of 3
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 3
Use $sin^2theta+cos^2theta=1$

L.S: $dfrac{cos^2phi}{1-sinphi}=dfrac{1-sin^2phi}{1-sinphi}$

Factor using $a^2-b^2=(a+b)(a-b)$

$implies dfrac{1-sin^2phi}{1-sinphi}$=$dfrac{(1-sinphi)(1+sinphi)}{1-sinphi}$

$=1+sinphi=$ R.S.

Result
3 of 3
See proof inside.
Exercise 5
Step 1
1 of 7
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 7
Here, we need to express each ratio in terms of $x$, $y$ and $r$

Remember that for a unit circle, $r=1$

$cos theta=dfrac{x}{r}=x$

$sintheta=dfrac{y}{r}=y$

$tan theta=dfrac{sin theta}{costheta}=dfrac{y}{x}$

The restrictions on $theta$ are its values that could make any denominator equal to zero.

Step 3
3 of 7
a)
L.S. = $dfrac{sin x}{tan x}=dfrac{sin x}{sin x / cos x}=cos x$ = R.S.

Restrictions: $cos x neq 0$ and $sin x neq 0$

$$
x neq left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n} \
{{0^{text{o}}} + {{360}^{text{o}}}n} \
{{{180}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 4
4 of 7
b)

L.S. = $dfrac{tan theta}{cos theta}=dfrac{sin theta/costheta}{cos theta}=dfrac{sin theta}{cos^2theta}$

Use $sin^2theta+cos^2theta=1$

$dfrac{sin theta}{cos^2theta}=dfrac{sintheta}{1-sin^2theta}$ = R.S.

Restrictions: $cos thetaneq 0$

$$
theta ne left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 5
5 of 7
c)

R.S. = $dfrac{1+sin alpha}{cosalpha}=dfrac{1}{cosalpha}+dfrac{sinalpha}{cosalpha}$

Use $tan theta=dfrac{sintheta}{costheta}$

$dfrac{1}{cosalpha}+dfrac{sinalpha}{cosalpha}=dfrac{1}{cosalpha}+tan alpha =$ L.S.

Restrictions: $cosalpha neq 0$

$$
alpha ne left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Step 6
6 of 7
d)
Use $tan theta=dfrac{sintheta}{costheta}$

R.S. = $sintheta costheta tan theta=sintheta costheta cdot dfrac{sin theta}{costheta}= sin^2 theta$

Use $sin^2theta+cos^2theta=1$

$sin^2theta=1-cos^2theta =$ L.S.

Restrictions: $cos xneq 0$

$$
x neq left{ {begin{array}{c}
{{90^{text{o}}} + {{360}^{text{o}}}n} \
{{{270}^{text{o}}} + {{360}^{text{o}}}n}
end{array}} right.
$$

where $n$ is an integer

Result
7 of 7
See proof inside.
Exercise 6
Step 1
1 of 2
Marcia’s reasoning is wrong. An identity must be true for any value of $theta$. You have to show that the both sides are equal in any angle using known fundamental identities. Giving examples of $theta$ that makes the equation is true does NOT prove an identity.
Result
2 of 2
Marcia’s reasoning is incorrect.
Exercise 7
Step 1
1 of 6
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 6
a)

$sin theta cot theta – sin theta cos theta$

$color{#c34632}{ text{Use};; cottheta=dfrac{costheta}{sintheta}}$

$=sin theta cdot dfrac{costheta}{sintheta}-sinthetacostheta$

$=costheta-sinthetacostheta$

$$
=costheta(1-sintheta)
$$

Step 3
3 of 6
b)

$costheta(1+sectheta)(costheta-1)$

$=costhetaleft(1+dfrac{1}{costheta}right)(costheta-1)$

$=(costheta+1)(costheta-1)$

$color{#c34632}{text{Use} ;; (a+b)(a-b)=a^2-b^2}$

$=cos^2theta-1$

$color{#c34632}{text{Use};; sin^2theta+cos^2theta=1}$

$$
=-sin^2theta
$$

Step 4
4 of 6
c)

$color{#c34632}{text{Use};; (a+b)(a-b)=a^2-b^2}$

$(sin x+cos x)(sin x-cos x)+2cos^2 x$

$=sin^2 x -cos^2 x+2cos^2 x$

$=sin^2 x+cos^2x$

$color{#c34632}{text{Use};; sin^2theta+cos^2theta=1}$

$$
=1
$$

Step 5
5 of 6
d)

$color{#c34632}{text{Let } x=csctheta}$

$dfrac{csc^2theta-3csctheta+2}{csc^2theta-1}=dfrac{x^2-3x+2}{x^2-1}$

$color{#c34632}{text{Factor the numerator and denominator}}$

$=dfrac{(x-1)(x-2)}{(x-1)(x+1)}=dfrac{x-2}{x+1}$

$color{#c34632}text{Revert back to } x=csctheta$

$$
=dfrac{csctheta-2}{csctheta+1}
$$

Result
6 of 6
a) $costheta(1-sintheta)$

b) $-sin^2theta$

c) 1

d) $dfrac{csctheta-2}{csctheta+1}$

Exercise 8
Step 1
1 of 8
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 8
a)

$color{#c34632} text{Use } sin^2theta+cos^2theta=1$

L.S. = $dfrac{sin^2phi}{1-cosphi}=dfrac{1-cos^2phi}{1-cosphi}$

$color{#c34632}text{Factor using } a^2-b^2=(a+b)(a-b)$

$=dfrac{(1+cosphi)(1-cos phi)}{1-cos phi}=1+cos phi$ = R.S.

Step 3
3 of 8
b)

$color{#c34632}text{Use } tan^2theta+1=sec^2theta$

L.S. = $dfrac{tan^2alpha}{1+tan^2alpha}=dfrac{tan^2alpha}{sec^2alpha}=left(dfrac{tan alpha}{sec alpha}right)^2$

$color{#c34632}text{Use } tan theta=dfrac{sin theta}{costheta} ;text{and};sectheta=dfrac{1}{costheta}$

$=left(dfrac{sin alpha / cos alpha}{1/cosalpha}right)^2=sin^2alpha$ = R.S.

Step 4
4 of 8
c)

$color{#c34632};text{Use } (a-b)(a+b)=a^2-b^2;text{and}; sin^2theta+cos^2theta=1$

R.S. = $(1-sin x)(1+sin x)=1-sin^2 x =cos^2 x$ = L.S.

Step 5
5 of 8
d) $color{#c34632}text{Use } sin^2theta+cos^2theta=1$

$sin^2theta+2cos^2theta-1$

$=(1-cos^2theta)+2cos^2theta-1$

$=1+cos^2theta-1$

$=cos^2theta$ = R.S.

Step 6
6 of 8
e) $color{#c34632};text{Use}; a^4-b^4=(a^2+b^2)(a^2-b^2)$

L.S. = $sin^4alpha-cos^4alpha$

$=(sin^2alpha+cos^2alpha)(sin^2alpha-cos^2alpha)$

$color{#c34632};text{Use}; sin^2theta+cos^2theta=1$

$=(1)(sin^2alpha-cos^2alpha)=$ R.S.

Step 7
7 of 8
f) L.S. = $tan theta+dfrac{1}{tan theta}$

$color{#c34632}text{Use the quotient identities for tangent}$

$=dfrac{sin theta}{costheta}+dfrac{costheta}{sin theta}$

$color{#c34632}text{Use} sin^2theta+cos^2theta=1$

$=dfrac{sin^2theta+cos^2theta}{sintheta costheta}$

$=dfrac{1}{sinthetacostheta}$ = R.S.

Result
8 of 8
See proof inside.
Exercise 9
Step 1
1 of 2
a) It could work but not for all cases such as when there are trigonometric ratios in the denominator. In this case, some parts of the graph would be undefined.

b) This approach can only be used if there are no trigonometric ratios in the denominator.

Result
2 of 2
a) Not for all cases.

b) This approach can only be used if there are no trigonometric ratios in the denominator.

Exercise 10
Step 1
1 of 2
If we can find any value of $theta$ such that both sides are defined but does not make the equation true, then it is NOT an identity.

For $theta=45^circ$, both sides are defined.

L.S. $csc^2 45^circ+sec^2 45^circ =(sqrt{2})^2+(sqrt{2})^2=4$

R.S. $1$

L.S. $neq$ R.S.

Therefore, it is NOT an identity.

Result
2 of 2
not an identity
Exercise 11
Step 1
1 of 3
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 3
L.S. = $sin^2 x left(1+dfrac{1}{tan^2 x}right)$

$=sin^2 xleft(dfrac{tan^2x+1}{tan^2x}right)$

$color{#c34632}text{Use }1+tan^2theta=sec^2theta;text{and};sectheta=dfrac{1}{costheta}$

$=sin^2 x left(dfrac{sec^2 x}{tan^2x}right)$

$=sin^2 x left(dfrac{sec x}{tan x}right)^2$

$=sin^2x left(dfrac{1/cos x}{sin x/cos x}right)^2$

$=sin^2xcdot dfrac{1}{sin^2x}$

$=1=$ R.S.

Result
3 of 3
See proof inside.
Exercise 12
Step 1
1 of 4
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 4
a)

$color{#c34632};text{Use};sin^2theta+cos^2theta=1$

L.S. = $dfrac{sin^2theta+2costheta-1}{sin^2theta+3costheta-3}=dfrac{(1-cos^2theta)+2costheta-1}{(1-cos^2theta)+3costheta-3}$

$=dfrac{-cos^2theta+2costheta}{-cos^2theta+3costheta-2}$

$color{#c34632};text{Let};x=costheta$

$=dfrac{-x^2+2x}{-x^2+3x-2}=dfrac{(-1)(x^2-2x)}{(-1)(x^2-3x+2)}$

$=dfrac{x(x-2)}{(x-1)(x-2)}=dfrac{x}{x-1}=dfrac{costheta}{costheta-1}$

R.S. = $dfrac{cos^2theta+costheta}{-sin^2theta}$

$color{#c34632}text{Use }sin^2theta+cos^2theta=1$

$=dfrac{cos^2theta+costheta}{-(1-cos^2theta)}$

$=dfrac{cos^2theta+costheta}{cos^2theta-1}$

$=dfrac{costheta(costheta+1)}{(costheta+1)(costheta-1)}$

$=dfrac{costheta}{costheta-1}$

$costheta neq 1$ and $sin thetaneq 0$

Step 3
3 of 4
b) R.S. $=dfrac{2sin^2alpha-2sin^4alpha-1}{1-sin^2alpha}$

$color{#c34632}text{Let};y=sin alpha$

$=dfrac{2y^2-2y^4-1}{1-y^2}$

$=dfrac{2y^2(1-y^2)-1}{1-y^2}$

$=dfrac{2y^2(1-y^2)}{1-y^2}-dfrac{1}{1-y^2}$

$=2y^2-dfrac{1}{1-y^2}$

$=2sin^2theta-dfrac{1}{1-sin^2theta}$

$color{#c34632}text{Use};sin^2theta+cos^2theta=1$

$=2sin^2theta-dfrac{1}{cos^2theta}$

$color{#c34632}text{Use};sectheta=dfrac{1}{costheta}$

$=2sin^2theta-sec^2theta$

$color{#c34632}text{Use};tan^2theta+1=sec^2theta$

$=2sin^2theta-(tan^2theta+1)$

$color{#c34632}text{Use};sin^2theta+cos^2theta=1$

$=2sin^2theta-tan^2theta+(sin^2theta+cos^2theta)$

$=sin^2theta+cos^2theta-tan^2theta$ = L.S.

Result
4 of 4
See proof inside.
Exercise 13
Step 1
1 of 5
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 5
Answers can vary. Here are some examples.

i) Multiply both sides by $dfrac{1}{sintheta}$

$left(dfrac{1}{sintheta}right) (sin^2theta+cos^2theta)=dfrac{1}{sintheta}$

$$
sintheta+csctheta cos^2theta=csctheta
$$

Step 3
3 of 5
ii) Divide both sides by $cos^2theta$

$left(dfrac{1}{cos^2theta}right) (sin^2theta+cos^2theta)=dfrac{1}{cos^2theta}$

$tan^2theta+1=dfrac{1}{cos^2theta}$

Subtract both sides by $1$

$tan^2theta=dfrac{1}{cos^2theta}-1$

Step 4
4 of 5
iii)Multiply both sides by $sectheta$

$left(secthetaright) (sin^2theta+cos^2theta)=1cdot sec theta$

$sin^2thetasectheta+costheta=sectheta$

Result
5 of 5
Answers can vary. See examples inside.
Exercise 14
Step 1
1 of 9
begin{table}[]
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
Step 2
2 of 9
[begin{gathered}
{text{i)}} hfill \
hfill \
{text{L}}{text{.S}}{text{.}} = left( {1 – {{cos }^2}x} right)left( {1 – {{tan }^2}x} right){text{ }} hfill \
{text{ }} hfill \
{color{red}text{[Use }}color{red}{color{red}sin ^2}x + {cos ^2}x = 1 Rightarrow 1 – {cos ^2}x = {sin ^2}x] hfill \
hfill \
= {sin ^2}xleft( {1 – {{tan }^2}x} right){text{ }} hfill \
hfill \
color{red} left[color{red} {{text{Use }}color{red}tan x = frac{{sin x }}{{cos x }}} right] hfill \
{text{ }} hfill \
= {sin ^2}xleft( {1 – frac{{{{sin }^2}x}}{{{{cos }^2}x}}} right){text{ }} hfill \
{text{ }} hfill \
= {sin ^2}xleft( {frac{{{{cos }^2}x – {{sin }^2}x}}{{{{cos }^2}x}}} right) hfill \
hfill \
= frac{{{{sin }^2}x{{cos }^2}x – {{sin }^4}x}}{{{{cos }^2}x}} hfill \
hfill \
= frac{{{{sin }^2}x{{cos }^2}x – {{sin }^4}x}}{{{{cos }^2}x}} hfill \
hfill \
{text{color{red}[Use }}color{red}{sin ^2}x + {cos ^2}x = 1 Rightarrow {cos ^2}x = 1 – {sin ^2}x] hfill \
hfill \
= frac{{{{sin }^2}xleft( {1 – {{sin }^2}x} right) – {{sin }^4}x}}{{1 – {{sin }^2}x}} hfill \
{text{ }} hfill \
= frac{{{{sin }^2}x – {{sin }^4}x – {{sin }^4}x}}{{1 – {{sin }^2}x}} hfill \
hfill \
= frac{{{{sin }^2}x – 2{{sin }^4}x}}{{1 – {{sin }^2}x}} = {text{R}}{text{.S}}{text{.}} hfill \
hfill \
end{gathered} ]
Step 3
3 of 9
[begin{gathered}
{text{ii)}} hfill \
1 – 2{cos ^2}phi = {sin ^4}phi – {cos ^4}phi hfill \
hfill \
{text{R}}{text{.S}}{text{. }} = {sin ^4}phi – {cos ^4}phi hfill \
hfill \
color{red} left[ {{text{Factor using }}{a^4} – {b^4} = left( {{a^2} + {b^2}} right)left( {{a^2} – {b^2}} right)} right] hfill \
hfill \
= left( {{{sin }^2}phi + {{cos }^2}phi } right)left( {{{sin }^2}phi – {{cos }^2}phi } right) hfill \
hfill \
color{red} left[ {{text{Use }}{{sin }^2}theta + {{cos }^2}theta = 1} right] hfill \
hfill \
= left( 1 right)left( {{{sin }^2}theta – {{cos }^2}theta } right) hfill \
hfill \
color{red} left[ {{text{Use }}{{sin }^2}theta + {{cos }^2}theta = 1 Rightarrow {{sin }^2}theta = 1 – {{cos }^2}theta } right] hfill \
hfill \
= left( {1 – {{cos }^2}phi } right) – {cos ^2}phi hfill \
hfill \
= 1 – 2{cos ^2}phi = {text{ L}}{text{.S}}{text{.}} hfill \
end{gathered} ]
Step 4
4 of 9
[begin{gathered}
{text{iii)}} hfill \
hfill \
frac{{sin theta tan theta }}{{sin theta + tan theta }} = sin theta tan theta hfill \
hfill \
{text{if }}theta = {text{4}}{{text{5}}^{text{o}}} hfill \
sin {45^{text{o}}} = frac{{sqrt 2 }}{2} hfill \
tan theta = 1 hfill \
hfill \
{text{L}}{text{.S}}{text{.}} = frac{{left( {frac{{sqrt 2 }}{2}} right)left( 1 right)}}{{frac{{sqrt 2 }}{2} + 1}} = frac{{sqrt 2 /2}}{{left( {sqrt 2 + 2} right)/2}} = frac{{sqrt 2 }}{{2 + sqrt 2 }} = 0.414 hfill \
{text{R}}{text{.S}}{text{.}} = left( {frac{{sqrt 2 }}{2}} right)left( 1 right) = frac{{sqrt 2 }}{2} = 0.707 hfill \
hfill \
{text{Thus, it is NOT an identity}}{text{.}} hfill \
end{gathered} ]
Step 5
5 of 9
[begin{gathered}
{text{iv)}} hfill \
hfill \
{text{L}}{text{.S}}{text{.}} = frac{{1 + 2sin beta cos beta }}{{sin beta + cos beta }} hfill \
hfill \
color{red}left[ {{text{Use }}1 = {{sin }^2}beta + {{cos }^2}beta } right] hfill \
hfill \
= frac{{{{sin }^2}beta + {{cos }^2}beta + 2sin beta cos beta }}{{sin beta + cos beta }} hfill \
hfill \
color{red}left[ {{text{Factor using }}left( {{a^2} + 2ab + {b^2}} right) = {{left( {a + b} right)}^2}} right] hfill \
hfill \
= frac{{{{left( {sin beta + cos beta } right)}^2}}}{{sin beta + cos beta }} hfill \
hfill \
= sin beta + cos beta = {text{ R}}{text{.S}}{text{.}} hfill \
end{gathered} ]
Step 6
6 of 9
[begin{gathered}
{text{v)}} hfill \
hfill \
{text{L}}{text{.S}}{text{.}} = frac{{1 – cos beta }}{{sin beta }} hfill \
hfill \
color{red}left[ {{text{Multiply by }}frac{{1 + cos beta }}{{1 + cos beta }}{text{ }}} right] hfill \
hfill \
= frac{{1 – cos beta }}{{sin beta }} cdot frac{{1 + cos beta }}{{1 + cos beta }} hfill \
hfill \
= frac{{1 – {{cos }^2}beta }}{{sin beta left( {1 + cos beta } right)}} hfill \
hfill \
color{red}left[ {{text{Use }}{{sin }^2}beta = 1 – {{cos }^2}beta {text{ }}} right] hfill \
hfill \
= frac{{{{sin }^2}beta }}{{sin beta left( {1 + cos beta } right)}} hfill \
hfill \
= frac{{sin beta }}{{1 + cos beta }} = {text{R}}{text{.S}}{text{.}} hfill \
end{gathered} ]
Step 7
7 of 9
[begin{gathered}
{text{vi)}} hfill \
hfill \
color{red}left[ {{text{Multiply by }}frac{{1 – cos x}}{{1 – cos x}}} right] hfill \
hfill \
{text{L}}{text{.S}}{text{.}} = frac{{sin x}}{{1 + cos x}} cdot frac{{1 – cos x}}{{1 – cos x}} hfill \
hfill \
= frac{{sin xleft( {1 – cos x} right)}}{{1 – {{cos }^2}x}} hfill \
hfill \
color{red} left[ {{text{Use }}1 – {{cos }^2}x = {{sin }^2}x} right] hfill \
hfill \
= frac{{sin xleft( {1 – cos x} right)}}{{{{sin }^2}x}} hfill \
hfill \
= frac{{1 – cos x}}{{sin x}} hfill \
hfill \
color{red}left[ {{text{Use }}frac{1}{{sin x}} = csc x{text{ and }}frac{{cos x}}{{sin x}} = cot x} right] hfill \
hfill \
= csc x – cot x = {text{ R}}{text{.S}}{text{.}} hfill \
end{gathered} ]
Step 8
8 of 9
a) Only option (iii) is not an identity.

b) The restrictions are those that could make the denominator zero:

i) $1-sin^2xneq 0implies$ $sin^2xneq 1$

ii) no restrictions, i.e. true for any real number

iii) not applicable

iv) $sin theta+cos thetaneq 0implies sinthetaneq -costheta$

v) $sin betaneq 0$ and $1+costhetaneq 0implies costhetaneq -1$

vi) $1+cos xneq 0implies cos xneq -1$

Result
9 of 9
See proof inside.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review