All Solutions
Section 3-6: The Zeros of a Quadratic Function
$f(x)=a(x-h)^2+k$
is vertex$(h,k)$
If $a>0$, the graph opens upward while if $a0$, there are two real zeros.
If $b^2-4ac=0$, there is only one real zero.
If $b^2-4ac<0$, there are no real zeros.
a) $f(x)=3(x-0)^2-5$
$a=3$, $b=0$ , $c=-5$
By inspection, the vertex is $(0,-5)$
Since $a>0$, the graph opens upward.
$b^2-4ac=0^2-4(3)(-5)=60>0$
There are two real zeros.
$a=-4$ , $b=0$ , $c=7$
By inspection, the vertex is $(0,7)$
Since $a0$
There are two real zeros.
$a=5$, $b=0$ , $c=3$
By inspection, the vertex is $(0,3)$
Since $a>0$, the graph opens upward.
$b^2-4ac=0^2-4(5)(3)=-60<0$
There are no real zeros.
By inspection the vertex is $(-2,0)$
Since $a>0$, the graph opens upward.
We can obtain the zeros as
$3(x+2)^2=0$
$(x+2)=pmsqrt{0/3}$
$x=-2$
There is only one zero.
By inspection the vertex is $(-3,-5)$
$f(x)=-4(x+3)^2-5$
$f(x)=-4(x^2+6x+9)-5$
$f(x)=-4x^2+24x-39$
Since $a<0$, the graph opens upward.
$b^2-4ac=24^2-4(-4)(-39)=-48<0$
No real zeros.
By inspection, the vertex is $(4,-2)$
$f(x)=0.5(x^2-8x+16)-2$
$f(x)=0.5x^2-4x+6$
Since $a>0$, the graph opens upward.
$b^2-4ac=(-4)^2-4(0.5)(6)=4>0$
There are two real zeros.
b) vertex$(0,7)$, down, 2 zeros
c) vertex$(0,3)$, up, no zeros
d) vertex$(-2,0)$, up, 1 zero
e) vertex$(-3,-5)$, down, no zeros
f) vertex$(4,-2)$, up, 2 zeros
a) $f(x)=x^2-6x-16=(x-8)(x+2)$
$x=8$ or $-$2 $implies 2$ zeros
b) $f(x)=2x^2-6x=2x(x-3)$
$x=0$ or 3 $implies$ 2 zeros
c) $f(x)=4x^2-1=(2x)^2-1^2=(2x+1)(2x-1)$
$x=-dfrac{1}{2}$ or $dfrac{1}{2}implies$ 2 zeros
d) $f(x)=9x^2+6x+1=(3x)^2+2(3x)(1)+1^2=(3x+1)^2$
$x=-dfrac{1}{3}implies$ one zero
b) 2 zeros
c) 2 zeros
d) 1 zero
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
$b^2-4ac=(-6)^2-4(2)(-7)=92implies$ 2 zeros
b) $a=3$ , $b=2$, $c=7$
$b^2-4ac=2^2-4(3)(7)=-80implies$ no zeros
c)$a=1$ , $b=8$ , $c=16$
$b^2-4ac=8^2-4(1)(16)=0implies$ 1 zero
d) $a=9$ , $b=-14.4$, $c=5.76$
$b^2-4ac=(-14.4)^2-4(9)(5.76)=0implies$ 1 zero
b) no zeros
c) 1 zero
d) 1 zero
Method 1: Determine $b^2-4ac$
Method 2: Solve by factoring
Method 3: Solve by quadratic formula
Method 4: Graphing
In this case, $a=-3<0$, so it opens downward and vertex is at $(2,4)$.
From the graph, there are two zeros.
$f(x)=5(x-3)(x+4)$
$x=3$ or $-4$
There are two zeros.
$a=4$, $b=-2$, $c=0$
$x=dfrac{-bpmsqrt{b^2-4ac}}{2a}$
$x=dfrac{2pmsqrt{2^2-4(4)(0)}}{2(4)}$
$x=dfrac{2pm 2}{8}$
$x=0$ or $x=dfrac{1}{2}$
There are two zeros.
$a=3$ , $b=-1$ , $c=5$
$b^2-4ac=(-1)^2-4(3)(5)=-59<0$
There are no zeros.
b) 2 zeros
c) 2 zeros
d) no zeros
To determine the number of zeros, use the following guidelines:
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
$b^2-4ac=9.06^2-4(-2.1)(-5.4)=36.7236>0$
Two ways to break-even.
$b^2-4ac=2^2-4(0.3)(-7.8)=-5.36<0$
The company cannot break-even.
$b^2-4ac=6.4^2-4(-2)(-5.12)=0$
One way to break-even.
$b^2-4ac=1^2-4(-2)(-1.2)=-8.6<0$
The company cannot break-even.
b) cannot break even
c) 1 break-even point
d) cannot break even
$b^2-4ac>0implies$ 2 $x$-intercepts
$b^2-4ac=0implies$ 1 $x$-intercept
$b^2-4ac<0implies$ no $x$-intercept
In this case,
$a=3$ , $b=-4$, $c=k$
$b^2-4ac=(-4)^2-4(3)(k)=0$
$16-12k=0$
$$
k=dfrac{4}{3}
$$
k=dfrac{4}{3}
$$
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
In this case,
$a=k$ , $b=-4$, $c=k$
$b^2-4ac=(-4)^2-4(k)(k)<0$
$16-4k^2<0$
$-4k^216$
$k^2>4$
$k2$
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
$a=3$ , $b=4$, $c=k$
$b^2-4ac=4^2-4(3)(k)=16-12k$
2 zeros: $16-12k>0implies k<dfrac{4}{3}$
1 zero: $16-12k=0implies k=dfrac{4}{3}$
no zeros: $16-2kdfrac{4}{3}$
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
$a=1$, $b=-k$, $c=k+8$
$b^2-4ac=(-k)^2-4(1)(k+8)=0$
$k^2-4k-32=0$
$(k-8)(k+4)=0$
$k=8$ or $-$4
$b^2-4ac>0implies$ 2 solutions
$b^2-4ac=0implies$ 1 solution
$b^2-4ac<0implies$ no solutions
$n^2+25=-8n$
$n^2+8n+25=0$
$a=1$, $b=8$ , $c=25$
$b^2-4ac=8^2-4(1)(25)=-36<0$
It has no solution, thus it is NOT possible that $n^2+25=-8n$
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac=0implies$ 1 zero
$b^2-4ac<0implies$ no zeros
a) We can write the parabola with 2 zeros in factored form such that $a<0$
For example:
$f(x)=-2(x-3)(x+5)$
$f(x)=-(x+6)(x+32)$
$$
f(x)=-3x(x+3)
$$
For example:
$f(x)=x^2+5$
$f(x)=(x-1)^2+8$
$$
f(x)=(x+2)^2+12
$$
Since it opens down, $a<0$
For example
$f(x)=-x^2$
$f(x)=-(x-3)^2$
$$
f(x)=-3(x+5)^2
$$
a) $f(x)=-2(x-3)(x+5)$
b) $f(x)=x^2+5$
c) $f(x)=-x^2$
Thus, we shall find the value of $x$ such that $xcdot p(x)=C(x)$
$-4x+42.5=4.1x+92.16$
$x(-4x+42.5)=4.1x+92.16$
$-4x^2+42.5x=4.1x+92.16$
$-4x^2+38.4x-92.16=0$
We will use quadratic formula
$a=-4$ , $b=38.4$ , $c=-92.16$
$x=dfrac{-bpmsqrt{b^2-4ac}}{2a}$
$x=dfrac{-38.4pmsqrt{38.4^2-4(-4)(-92.16)}}{2(-4)}$
$x=dfrac{38.4pmsqrt{0}}{8}$
$x=4.8$
$x(-4x+42.5)=17.9x+19.36$
$-4x^2+42.5x=17.9x+19.36$
$4x^2-24.6x+19.36=0$
$a=4$, $b=-24.6$ , $c=19.36$
$x=dfrac{-(-24.6)pmsqrt{(-24.6)^2-4(4)(19.36)}}{2(4)}$
$x=dfrac{24.6pmsqrt{605.16-309.76}}{8}$
$x=dfrac{24.6pmsqrt{295.4}}{8}$
$x=dfrac{24.6pm 17.187}{8}$
$x=0.93$ or $5.2$
The first break-even point is $0.93$
$x(-4x+42.5)=8.8x+55.4$
$-4x^2+42.5x=8.8x+55.4$
$4x^2-33.7x+55.4=0$
$a=4$ , $b=-33.7$ , $c=55.4$
$x=dfrac{-(-33.7)pmsqrt{(-33.7)^2-4(4)(55.4)}}{2(4)}$
$x=dfrac{33.7pmsqrt{1135.69-886.4}}{8}$
$x=dfrac{33.7pmsqrt{249.29}}{8}$
$x=dfrac{33.7-15.7889}{8}$
$x=6.2$ or $x=2.2$
The first break-even point is 2.2.
Machine B: break-even $x=0.93$
Machine C: break-even $x=2.2$
Choose Machine B since it has the earliest break-even point.
If the vertex$(h,k)$ is above the $x$-axis and it opens downward, there will be two zeros.
If the vertex$(h,k)$ is below the $x$-axis and it opens upward, there will be two zeros.
If none of the above conditions are true, there would be no zeros.
b) Horizontal translation will move the vertex along the $x$-axis, thus it would still be on the $x$-axis, and would have no effect.
c) Horizontal compression will not change the location of the vertex. Reflection in the $x$-axis will not change the vertex since it’s on the $x$-axis. Thus, it would have no effect.
d) Vertical translation 3 units down would result in a vertex below the $x$-axis opening upward. Thus, there will be two zeros.
e) Horizontal translation 4 units to the right would result in a vertex on the axis. However, vertical translation 3 units up would result in a vertex above the $x$-axis and the parabola opens upwards. In this case, there will be no zeros.
f) Reflection in the $x$-axis would result in parabola which opens downwards while horizontal translation 1 unit to the left would still result in vertex lying in the $x$-axis. A vertical translation 5 units up will set the vertex above the $x$-axis and the parabola opens downward, thus, there will be 2 zeros.
b) no effect
c) no effect
d) change from 1 to 2 zeros
e) change from 1 to no zeros
f) change from 1 to 2 zeros
$f(x)=g(x)$
$x^2-6x+14=-x^2-20x-k$
$2x^2+14x+14+k=0$
The two parabolas must intersect only at one point, thus, we shall find the value of $k$ which results in only one zero.
Note that a quadratic function has only one zero if $b^2-4ac=0$
$a=2$ , $b=14$, $c=14+k$
$b^2-4ac=14^2-4(2)(14+k)=0$
$14+k=dfrac{14^2}{4(2)}$
$k=dfrac{14^2}{4(2)}-14$
$k=10.5$
The parent function $g(x)$ has 2 zeros and opens downward. Vertical translation will not affect the number of zeros, so $f(x)$ should have 2 zeros.
If $k=0$, there will be only one zero since the vertex is at $x$-axis.
If $a$ and $k$ have different sign, there will be two zeros.
If $a$ and $k$ have the same sign, there will be no zeros.
In other words, there will be 1 zero if it can be written in the form
$y=a(x+s)^2$, otherwise, there will be 2 zeros.
Calculate $b^2-4ac$, if
$b^2-4ac=0implies$ 1 zero
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac<0implies$ no zeros
If $k=0$, there will be only one zero since the vertex is at $x$-axis.
If $a$ and $k$ have different sign, there will be two zeros.
If $a$ and $k$ have the same sign, there will be no zeros.
b) One zero if it can be written in the form
$y=a(x+s)^2$, otherwise, there will be 2 zeros
c) $b^2-4ac=0implies$ 1 zero
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac<0implies$ no zeros
$kx^2-k=x^2-2x+1$
$kx^2-x^2+2x-k-1=0$
$x^2(k-1)+2x-(k+1)=0$
$a=k-1$ , $b=2$, $c=-(k+1)$
Now, we shall calculate $b^2-4ac=0$
If two values of $k$ can satisfy $b^2-4ac=0$, then there will be two solutions
If only one value of $k$ can satisfy $b^2-4ac=0$, then it has only one solution.
$b^2-4ac=2^2-4(k-1)[-(k+1)]=0$
$4+4(k^2-1)=0$
$4(k^2-1)=-4$
$k^2-1=-1$
$k^2=0$
$k=0$
Thus, $(x^2-1)k=(x-1)^2$ has one solution for only
one value of $k$ which is $k=0$
If $b^2-4ac=0implies$ 1 zero
$b^2-4ac>0implies$ 2 zeros
$b^2-4ac0$ for all values of $k$, thus it will always have 2 zeros.
There will be no value of $k$ that will result in no zeros or one zero.