All Solutions
Section 3-3: The Inverse of a Quadratic Function
$$
(x,y)rightarrow (y,x)
$$
$$
(x,y)rightarrow (y,x)
$$
$y=a(x-h)^2+k$
If you replace $y$ with $x$ and $x$ with $y$, this becomes,
$x=a(y-h)^2+k$
$(y-h)^2=dfrac{x-k}{a}$
$y-h=pmsqrt{dfrac{x-k}{a}}$
$y=hpm sqrt{dfrac{x-k}{a}}$
Thus, $y=hpmsqrt{dfrac{x-k}{a}}$ is the inverse of $y=a(x-h)^2+k$
We shall find the equation of each quadratic function, find the inverse, and graph the inverse relation.
a) The graph has vertex$(0,0)$ and passes through $(1,1)$
$y=a(x-h)^2+kimplies 1=a(1-0)^2+0implies a=1$
The equation of the parabola is $y=1cdot (x-0)^2+0implies y=x^2$
The inverse relation is $x=y^2implies y=pm sqrt{x}$
$y=a(x-h)^2+kimplies 0=a(-1+2)^2+3 implies a=-dfrac{3}{(1)^2}=-3$
The equation is $y=-3(x+2)^2+3$
The inverse relation is obtained as
$x=-3(y+2)^2+3$
$(y+2)^2=dfrac{x-3}{-3}$
$y+2=pmsqrt{dfrac{3-x}{3}}$
$$
y=-2pmsqrt{dfrac{3-x}{3}}
$$
b) $y=-2pm sqrt{dfrac{3-x}{3}}$
See graph inside.
$y=a(x-h)^2+k$
If you replace $y$ with $x$ and $x$ with $y$, this becomes,
$x=a(y-h)^2+k$
$(y-h)^2=dfrac{x-k}{a}$
$y-h=pmsqrt{dfrac{x-k}{a}}$
$y=hpm sqrt{dfrac{x-k}{a}}$
Thus, $y=hpmsqrt{dfrac{x-k}{a}}$ is the inverse of $y=a(x-h)^2+k$
$f(x)=2x^2-1$
$y=2x^2-1$
Replace $y$ with $x$, and replace $x$ with $y$
$x=2y^2-1$
$2y^2=x+1$
$y^2=dfrac{x+1}{2}$
$y=pmsqrt{dfrac{x+1}{2}}$
Therefore, the inverse of $f(x)$ is
$$
f^{-1}(x)=pmsqrt{dfrac{x+1}{2}}
$$
f^{-1}(x)=pmsqrt{dfrac{x+1}{2}}
$$
results to
$$
begin{align*}
f(3)&=7-2(3-1)^2
\
f(3)&=7-2(2)^2
\
f(3)&=7-2(4)
\
f(3)&=7-8
\
f(3)&=-1
.end{align*}
$$
,$
results to
$$
begin{align*}
x&=7-2(y-1)^2
\
x-7&=-2(y-1)^2
\
dfrac{x-7}{-2}&=(y-1)^2
\
pmsqrt{dfrac{x-7}{-2}}&=y-1
\
1pmsqrt{dfrac{x-7}{-2}}&=y
\
f^{-1}(x)&=1pmsqrt{dfrac{x-7}{-2}},xge1
.end{align*}
$$
,$ results to
$$
begin{align*}
f^{-1}(5)&=1pmsqrt{dfrac{5-7}{-2}}
\
f^{-1}(5)&=1pmsqrt{dfrac{-2}{-2}}
\
f^{-1}(5)&=1pmsqrt{1}
end{align*}
$$
$$
begin{align*}
begin{array}{rcl}
f^{-1}(5)=1+1
& text{ OR } &
f^{-1}(5)=1-1
\
f^{-1}(5)=2
& &
f^{-1}(5)=0
.end{array}
end{align*}
$$
Hence, $f^{-1}(5)=left{ 0,2 right}
.$
,$ results to
$$
begin{align*}
f^{-1}(2a+7)&=1pmsqrt{dfrac{2a+7-7}{-2}}
\
f^{-1}(2a+7)&=1pmsqrt{dfrac{2a}{-2}}
\
f^{-1}(2a+7)&=1pmsqrt{-a}
.end{align*}
$$
Since $xge1,$ then
$$
begin{align*}
2a+7&ge1
\
2a&ge1-7
\
2a&ge-6
\
a&ge-dfrac{6}{2}
\
a&ge-3
.end{align*}
$$
Combining the inverse and its restriction, then $f^{-1}(2a+7)=1pmsqrt{-a}, age-3
.$ Since the radicand of an even index should be nonnegative, then the additional restriction, $ale0,$ is needed. Hence, $f^{-1}(2a+7)=1pmsqrt{-a}, -3le ale0
.$
b) $f^{-1}(x)=1pmsqrt{dfrac{x-7}{-2}},xge1$
c) $f^{-1}(5)=left{ 0,2 right}$
d) $f^{-1}(2a+7)=1pmsqrt{-a}, -3le ale0$
$y=a(x-h)^2+k$
If you replace $y$ with $x$ and $x$ with $y$, this becomes,
$x=a(y-h)^2+k$
$(y-h)^2=dfrac{x-k}{a}$
$y-h=pmsqrt{dfrac{x-k}{a}}$
$y=hpm sqrt{dfrac{x-k}{a}}$
Thus, $y=hpmsqrt{dfrac{x-k}{a}}$ is the inverse of $y=a(x-h)^2+k$
a) We can sketch the graph of $f(x)=3(x-2)^2-2$ by plotting the vertex $(2,-2)$ (opens upward) with axis of symmetry at $x=2$, and substitute values of $x$ to get another points.
$x=3(y-2)^2-2$
$(y-2)^2=dfrac{x+2}{3}$
$y-2=pmsqrt{dfrac{x+2}{3}}$
$$
y=2pmsqrt{dfrac{x+2}{3}}
$$
See graph inside.
,$ is shown below.
$$
begin{align*}
text{Domain: }&
(-infty,0]
\text{Range: }&
[0,infty)
.end{align*}
$$
.$
Interchanging $x$ and $y$ and then solving for $y,$ then
$$
begin{align*}
x&=-sqrt{y}
\
(x)^2&=(-sqrt{y})^2
\
x^2&=y
\
g^{-1}(x)&=x^2, xle0
.end{align*}
$$
b) see graph
c) Domain: $(-infty,0]$; Range: $[0,infty)$
d) $g^{-1}(x)=x^2, xle0$
$y=a(x-h)^2+k$
If you replace $y$ with $x$ and $x$ with $y$, this becomes,
$x=a(y-h)^2+k$
$(y-h)^2=dfrac{x-k}{a}$
$y-h=pmsqrt{dfrac{x-k}{a}}$
$y=hpm sqrt{dfrac{x-k}{a}}$
Thus, $y=hpmsqrt{dfrac{x-k}{a}}$ is the inverse of $y=a(x-h)^2+k$
The graph of $f(x)=-(x+1)^2-3$ has axis of symmetry at $x=-1$, so for $xgeq -1$, we only get the right side from the axis of symmetry.
The inverse is
$x=-(y+1)^2-3implies (y+1)^2=-x-3implies y+1=pm sqrt{-(x+3)}$
$y=-1pmsqrt{-(x+3)}$ for $ygeq -1$
$$
y=-1+sqrt{-(x+3)}
$$
y=-1pmsqrt{-(x-3)}
$$
,$ is equivalent to $y=dfrac{1}{2}(x-5)^2+3
.$
Interchanging $x$ and $y$ and then solving for $y,$ then
$$
begin{align*}
x&=dfrac{1}{2}(y-5)^2+3
\
x-3&=dfrac{1}{2}(y-5)^2
\
2(x-3)&=2cdotdfrac{1}{2}(y-5)^2
\
2(x-3)&=(y-5)^2
\
pmsqrt{2(x-3)}&=y-5
\
5pmsqrt{2(x-3)}&=y
\
f^{-1}(x)&=5pmsqrt{2(x-3)}
.end{align*}
$$
Since $xle5,$ then $f^{-1}(x)=5-sqrt{2(x-3)}
.$
Using a graphing software the graphs of $f(x),xle5$ (red graph) and
$f^{-1}(x)$ (blue graph) are shown below.
f^{-1}(x)=5-sqrt{2(x-3)}
$$
,$ is equivalent to
$$
begin{align*}
f(x)&=3(x^2-2x)
\
f(x)&=3(x^2-2x+1)-3(1)
\
f(x)&=3(x-1)^2-3
.end{align*}
$$
Since $a>0$ ($a=3$) then the graph of the given equation is a parabola that opens up. Its minimum is $-3$ when $x=1$ since the minimum is given by $k$ at $x=h.$
Substituting $x=-2$ and $x=3$ in the given function, $f(x)=3x^2-6x
,$ result to
$$
begin{align*}
x=-2:
\
f(-2)&=3(-2)^2-6(-2)
\
f(-2)&=3(4)-6(-2)
\
f(-2)&=12+12
\
f(-2)&=24
\\
x=3:
\
f(3)&=3(3)^2-6(3)
\
f(3)&=3(9)-6(3)
\
f(3)&=27-18
\
f(3)&=9
.end{align*}
$$
Hence, the highest value of $f(x)$ is $24$ and the lowest value is $-3$ when $-2<x<3.$ Hence,
domain: $(-2,3)$; range: $[-3,24)$.
,$ result to
$$
begin{align*}
x=1:
\
f(1)&=3(1)^2-6(1)
\
f(1)&=3(1)-6(1)
\
f(1)&=3-6
\
f(1)&=-3
\\
x=3:
\
f(3)&=3(3)^2-6(3)
\
f(3)&=3(9)-6(3)
\
f(3)&=27-18
\
f(3)&=9
.end{align*}
$$
Hence, the restrictions for $f^{-1}(x)$ is $-3<x<9.$
Using $f(x)=y,$ the given function, $f(x)=3x^2-6x
,$ is equivalent to
$$
begin{align*}
y=3x^2-6x
.end{align*}
$$
Interchanging the $x$ and $y$ variables and then solving for $y,$ result to
$$
begin{align*}
x&=3y^2-6y
\
x&=3(y^2-2y)
\
x+3(1)&=3(y^2-2y+1)
\
x+3&=3(y-1)^2
\
dfrac{x+3}{3}&=(y-1)^2
\
pmsqrt{dfrac{x+3}{3}}&=y-1
\
1pmsqrt{dfrac{x+3}{3}}&=y
\
f^{-1}(x)&=1pmsqrt{dfrac{x+3}{3}}
.end{align*}
$$
Since $f(x)$ has the restriction, $1<x<3,$ then
$$
begin{align*}
f^{-1}(x)&=1+sqrt{dfrac{x+3}{3}}
text{, }-3<x<9
.end{align*}
$$
b) $f^{-1}(x)=1+sqrt{dfrac{x+3}{3}}
text{, }-3<x<9$
,$ is equivalent to
$$
begin{align*}
h(t)&=(-5t^2+10t)+35
\
h(t)&=-5(t^2-2t)+35
\
h(t)&=-5(t^2-2t+1)+35+5(1)
\
h(t)&=-5(t-1)^2+35+5
\
h(t)&=-5(t-1)^2+40
.end{align*}
$$
,$ can be any real number. Hence its domain is the set of all real numbers. Also, the graph of the given equation is a parabola that opens down. Hence, it has a maximum value. Since the maximum value occurs at $k,$ then the range of the given function is $(-infty,40]
.$
Hence,
domain: all real numbers; range: $-(infty,40]$.
,$ is equivalent to
$$
begin{align*}
h=-5t^2+10t+35
.end{align*}
$$
Solving for $t$ results to
$$
begin{align*}
h&=(-5t^2+10t)+35
\
h-35&=-5(t^2-2t)
\
h-35-5&=-5(t^2-2t+1)
\
h-40&=-5(t-1)^2
\
dfrac{h-40}{-5}&=(t-1)^2
\
sqrt{dfrac{h-40}{-5}}&=t-1
\
1+sqrt{dfrac{-(h-40)}{5}}&=t
\
t&=1+sqrt{dfrac{-h+40}{5}}
.end{align*}
$$
Hence, the new model, $t(h)=t,$ is $t(h)=1+sqrt{dfrac{-h+40}{5}}
.$
,$ cannot be nonnegative. Hence,
$$
begin{align*}
dfrac{-h+40}{5}&ge0
\\
-h+40&ge0
\\
-h&ge-40
\\
h&le40
text{ (reverse the inequality symbol)}
.end{align*}
$$
Hence, the domain is the set of values of $h$ that are less than or equal to $40.$
Since the lowest value of the radical expression is $0,$ then the lowest value of $t(h)$ is $1.$ This means that the range is greater than or equal to $1.$
Hence,
domain: $(-infty,40];$ range: $[1,infty)$.
b) domain: all real numbers; range: $-(infty,40]$
c) $t(h)=1+sqrt{dfrac{-h+40}{5}}$
d) domain: $(-infty,40];$ range: $[1,infty)$
b) see graph
c) see graph
d) YES
,$ is equivalent to
$$
begin{align*}
f(x)&=(-2x^2+3x)-1
\&=
-2left( x^2-dfrac{3}{2}x right)-1
\&=
-2left( x^2-dfrac{3}{2}x+dfrac{9}{16} right)-1+2left( dfrac{9}{16} right)
\&=
-2left( x-dfrac{3}{4} right)^2-1+dfrac{9}{8}
\&=
-2left( x-dfrac{3}{4} right)^2-dfrac{8}{8}+dfrac{9}{8}
\&=
-2left( x-dfrac{3}{4} right)^2+dfrac{1}{8}
.end{align*}
$$
Since the vertex is given by $(h,k),$ then the vertex of the given function is $left( dfrac{3}{4},dfrac{1}{8} right)
.$
.$
Interchanging the $x$ and $y$ variables and then solving for $y,$ then
$$
begin{align*}
x&=-2y^2+3y-1
\
x+1&=-2left(y^2-dfrac{3}{2}y right)
\
x+1-2left(dfrac{9}{16}right)&=-2left(y^2-dfrac{3}{2}y+dfrac{9}{16} right)
\
x+1-dfrac{9}{8}&=-2left(y-dfrac{3}{4} right)^2
\
x-dfrac{1}{8}&=-2left(y-dfrac{3}{4} right)^2
\
dfrac{8x-1}{8}&=-2left(y-dfrac{3}{4} right)^2
\
dfrac{dfrac{8x-1}{8}}{-2}&=left(y-dfrac{3}{4} right)^2
\
dfrac{-8x+1}{16}&=left(y-dfrac{3}{4} right)^2
\
pmsqrt{dfrac{-8x+1}{16}}&=y-dfrac{3}{4}
\
pmdfrac{sqrt{-8x+1}}{4}&=y-dfrac{3}{4}
\
dfrac{3}{4}pmdfrac{sqrt{-8x+1}}{4}&=y
\
y&=dfrac{3pmsqrt{-8x+1}}{4}
.end{align*}
$$
Since it is given that $yge0.75,$ then $f^{-1}(x)=dfrac{3+sqrt{-8x+1}}{4}
.$ The graph of $f^{-1}(x)$ (blue graph) is shown below.
,$ is
domain: $(-infty,0.125]$; range: $[0.75,infty)$.
b) see graph
c) $f^{-1}(x)=dfrac{3+sqrt{-8x+1}}{4}$
d) domain: $(-infty,0.125]$; range: $[0.75,infty)$
e) see explanation
.$ Since the vertex is at $(4,1),$ then the function takes the form $f(x)=a(x-4)^2+1
.$ Since the graph passes through the point $(3,0),$ then
$$
begin{align*}
f(x)&=a(x-4)^2+1
\
0&=a(3-4)^2+1
\
0&=a(1)+1
\
-1&=a
.end{align*}
$$
Hence, the equation of the given graph is $f(x)=-(x-4)^2+1
.$
,$ is equivalent to $y=-(x-4)^2+1
.$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=-(y-4)^2+1
\
x-1&=-(y-4)^2
\
-(x-1)&=(y-4)^2
\
pmsqrt{-x+1}&=y-4
\
4pmsqrt{-x+1}&=y
\
f^{-1}(x)&=4pmsqrt{-x+1}
.end{align*}
$$
Hence, the inverse equations are
$f^{-1}(x)=4+sqrt{-x+1}$ or $f^{-1}(x)=4-sqrt{-x+1}$.
.$ Since the vertex is at $(1,-3),$ then the function takes the form $f(x)=a(x-1)^2-3
.$ Since the graph passes through the point $(0,-2),$ then
$$
begin{align*}
-2=a(0-1)^2-3
\
-2=a(1)-3
\
-2+3=a(1)
\
1=a
.end{align*}
$$
Hence, the equation of the given graph is $f(x)=(x-1)^2-3
.$
,$ is equivalent to $y=(x-1)^2-3
.$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=(y-1)^2-3
\
x+3&=(y-1)^2
\
pmsqrt{x+3}&=y-1
\
1pmsqrt{x+3}&=y
\
y&=1pmsqrt{x+3}
.end{align*}
$$
Hence, the inverse equations are
$f^{-1}(x)=1-sqrt{x+3}$ or $f^{-1}(x)=1+sqrt{x+3}$.
.$ Since the vertex is at $(-3,-2),$ then the function takes the form $f(x)=a(x+3)^2-2
.$ Since the graph passes through the point $(-4,-1),$ then
$$
begin{align*}
-1&=a(-4+3)^2-2
\
-1+2&=a(1)
\
1&=a
.end{align*}
$$
Hence, the equation of the given graph is $f(x)=(x+3)^2-2,xle-3
.$
,$ is equivalent to $y=(x+3)^2-2,xle-3
.$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=(y+3)^2-2
\
x+2&=(y+3)^2
\
pmsqrt{x+2}&=y+3
\
-3pmsqrt{x+2}&=y
.end{align*}
$$
Since $xle-3$ in $f(x),$ then the inverse equation is $f^{-1}(x)=-3-sqrt{x+2}$.
.$ Since the vertex is at $(2,3),$ then the function takes the form $f(x)=sqrt{-a(x-2)}+3
.$ Since the graph passes through the point $(1,4),$ then
$$
begin{align*}
4=sqrt{-a(1-2)}+3
\
4=sqrt{a}+3
\
4-3=sqrt{a}
\
1=sqrt{a}
\
1=a
.end{align*}
$$
Hence, the equation of the given graph is $f(x)=sqrt{-(x-2)}+3,xle2
.$
,$ is equivalent to $y=sqrt{-(x-2)}+3
.$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=sqrt{-(y-2)}+3
\
x-3&=sqrt{-y+2}
\
(x-3)^2&=left( sqrt{-y+2} right)^2
\
(x-3)^2&=-y+2
\
(x-3)^2-2&=-y
\
-(x-3)^2+2&=y
\
y&=-(x-3)^2+2
.end{align*}
$$
Since $yge3$ in $f(x),$ then the inverse equation is $f^{-1}(x)=-(x-3)^2+2,xge3$.
a.ii) see graph
a.iii) Use $xge4$ or $xle4$ in $f$
a.iv) $f^{-1}(x)=4+sqrt{-x+1}$ or $f^{-1}(x)=4+sqrt{-x+1}$
b.i) $f(x)=(x-1)^2-3$
b.ii) see graph
b.iii) Use $xge1$ or $xle1$ in $f$
b.iv) $f^{-1}(x)=1-sqrt{x+3}$ or $f^{-1}(x)=1+sqrt{x+3}$
c.i) $f(x)=(x+3)^2-2,xle-3$
c.ii) see graph
c.iii) $xle-3$ in $f$
c.iv) $f^{-1}(x)=-3-sqrt{x+2}$
d.i) $f(x)=sqrt{-(x-2)}+3,xle2$
d.ii) see graph
d.iii) $yge3$ in $f$
d.iv) $f^{-1}(x)=-(x-3)^2+2,xge3$
b) NO
$$
begin{align*}
P(x)&=xcdot m(x)-3.21x
\
P(x)&=x(14700-3040x)-3.21x
\
P(x)&=14700x-3040x^2-3.21x
\
P(x)&=-3040x^2+14696.79x
.end{align*}
$$
Hence, the profit function is $P(x)=-3040x^2+14696.79x
.$
,$ is equivalent to
$$
begin{align*}
y=-3040x^2+14696.79x
.end{align*}
$$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=-3040y^2+14696.79y
\
x-3040(5.83)&=-3040(y^2-4.83y+5.83)
\
x-17723.2&=-3040(y-2.41)^2
\
dfrac{x-17723.2}{-3040}&=(y-2.41)^2
\
pmsqrt{dfrac{17723.2-x}{3040}}&=y-2.41
\
2.41pmsqrt{dfrac{17723.2-x}{3040}}&=y
.end{align*}
$$
Since $y$ is a positive number, then the inverse is $f^{-1}(x)=2.41+sqrt{dfrac{17723.2-x}{3040}}
.$
The inverse gives the amount per kilogram to sell the ground beef for a desired profit, $x.$
,$ then
$$
begin{align*}
f^{-1}(1900)&=2.41+sqrt{dfrac{17723.2-1900}{3040}}
\\
f^{-1}(1900)&approx2.41+2.28
\\
f^{-1}(1900)&approx4.69
.end{align*}
$$
Hence, the ground beef should sell at
approximately
$$
4.69$/kg
to earn a profit of
$$
1900.$
,$ then
$$
begin{align*}
-dfrac{b}{2a}Rightarrow&
-dfrac{14696.79}{2(-3040)}
\\&approx
2.42
.end{align*}
$$
Hence, the price per kilogram that will maximize the profit is $$2.42
.$
$$
3.10$/kg, then the profit function, $P(x),$ is
begin{align*}
P(x)&=xcdot m(x)-3.10x
\
P(x)&=x(14700-3040x)-3.10x
\
P(x)&=14700x-3040x^2-3.10x
\
P(x)&=-3040x^2+14696.9x
.end{align*}
The price, $x,$ is maximize at $x=-dfrac{b}{2a}.$ Hence,
begin{align*}
-dfrac{b}{2a}Rightarrow&
-dfrac{14696.9}{2(-3040)}
\\&approx
2.42
.end{align*}
Hence, the price per kilogram that will maximize the profit is $
$2.42
.$
\
The profit that will be earned is $P(2.42).$ Hence,
begin{align*}
P(2.42)&=-3040(2.42)^2+14696.9(2.42)
\
P(2.42)&=-17803.456+35566.498
\
P(2.42)&=17763.042
\
P(2.42)&approx
17763.04
.end{align*}
The profit is
approximately
$$
17,763.04$.
b) $f^{-1}(x)=2.41+sqrt{dfrac{17723.2-x}{3040}}$
c) approximately
$$
4.69$/kg
\d)
$$
2.42$\e)$$2.42$/kg; approximately
$$
17,763.04$
$$
,$ is shown below.
domain is $[0,infty)$ and the range is $(-infty,infty)$.
$$
begin{align*}
y&=4-4x+x^2
\
y&=x^2-4x+4
\
y&=(x-2)^2
.end{align*}
$$
Hence, the inverse is $f^{-1}(x)=(x-2)^2
.$
b) domain is $[0,infty)$ and the range is $(-infty,infty)$
c) $f^{-1}(x)=(x-2)^2$
d) YES