All Solutions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
$f(x)=ax^2+bx+c$ $;;;;;$ or $;;;;;$ $f(x)=a(x-h)^2+k$
will have a maximum if it opens downwards $(a0)$
a) $y=-x^2+7ximplies a=-1$
b) $f(x)=3(x-1)^2-4implies a=3$
c) $f(x)=-4(x+2)(x-3)=-4(x^2-x-6)=-4x^2+4x+24$
$implies a=-4$
d) $g(x)=4x^2+3x-5implies a=4$
Therefore, the answers are options a) and c)
If the parabola opens upward, the minimum value is $k$.
If the parabola opens downward, the maximum value is $k$.
b) The parabola opens downward with vertex $(4,8)$, so the maximum value is $8$
b) vertex$(4,8)$, maximum value: $8$
,$ is equivalent to
$$
begin{align*}
y=-4[x-(-1)]^2+6
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=6
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
f(x)=(x-5)^2+0
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=0
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
f(x)&=-2x^2+8x
\
f(x)&=-2(x^2-4x)
\
f(x)&=-2(x^2-4x+4)+2(4)
\
f(x)&=-2(x-2)^2+8
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=8
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
g(x)&=2(x-0)^2-7
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=-7
.end{align*}
$$
b) $y=0$
c) $y=8$
d) $y=-7$
,$ is equivalent to
$$
begin{align*}
y&=(x^2-4x)-1
\
y&=(x^2-4x+4)-1+4
\
y&=(x-2)^2+3
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=3
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
f(x)&=(x^2-8x)+12
\
f(x)&=(x^2-8x+16)+12-16
\
f(x)&=(x-4)^2-4
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=-4
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
y&=2(x^2+6x)
\
y&=2(x^2+6x+9)-2(9)
\
y&=2(x+3)^2-18
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=-18
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
y&=(-3x^2-12x)+15
\
y&=-3(x^2+4x)+15
\
y&=-3(x^2+4x+4)+15+3(4)
\
y&=-3(x+2)^2+15+12
\
y&=-3(x+2)^2+27
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=27
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
y&=3x^2-6x+5
\
y&=(3x^2-6x)+5
\
y&=3(x^2-2x)+5
\
y&=3(x^2-2x+1)+5-3(1)
\
y&=3(x-1)^2+5-3
\
y&=3(x-1)^2+2
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=2
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
g(x)&=-2[x-(-1)]^2-5
.end{align*}
$$
Since the maximum/minimum point of the quadratic function in the form $f(x)=a(x-h)^2+k,$ is $y=k,$ then the maximum/minimum point of the equation above is
$$
begin{align*}
y=-5
.end{align*}
$$
b) $y=-4$
c) $y=-18$
d) $y=27$
e) $y=2$
f) $y=-5$
Revenue function: $R(x)= [p(x)](x)$
To obtain the maximum revenue, solve for zeroes of the quadratic function. The maximum value corresponds to the revenue when $x$ is halfway between the two zeroes (at the axis of symmetry).
zeroes: $(-x+5)=0implies x=5$ and $x=0$
The revenue is maximum when $x=dfrac{5+0}{2}=2.5$
$R(2.5) = -left(2.5right)^2+5left(2.5right)=6.25$
Since $R$ has units of thousand dollars, the maximum revenue is $$ 6,250$.
zeroes: $(-4x+12)=0implies x=dfrac{12}{4}=3$ and $x=0$
The revenue is maximum when $x=dfrac{3+0}{2}=1.5$
$R(1.5) = -4(1.5)^2+12(1.5)=9$
The maximum revenue is $$9000$
zeroes: $(-0.6x+15)=0implies x=dfrac{15}{0.6}=25$ and $x=0$
The revenue is maximum when $x=dfrac{25+0}{2}=12.5$
$R(12.5)=-0.6(12.5)^2+15(12.5)=93.75$
The maximum revenue is $$9375$
zeroes: $(-1.2x+4.8)=0implies x=dfrac{4.8}{1.2}=4$ and $x=0$
The revenue is maximum when $x=dfrac{4+0}{2}=2$
$R(2)=-1.2(2)^2+4.8(2)=4.8$
The maximum revenue is $$4,800$
b) i) $R(x)=-4x^2+12x$ ; ii) maximum revenue: $$9,000$
c) i) $R(x)=-0.6x^2+15x$ ; ii) maximum revenue: $$93,750$
d) i) $R(x)=-1.2x^2+4.8x$ ; ii) maximum revenue: $$4,800$
,$ is shown below.
Based on the graph below, the maximum/minimum value is $-2.08
.$
,$ is shown below.
Based on the graph below, the maximum/minimum value is $1.6
.$
b) $1.6$
Profit = Revenue $-$ Cost
$P(x)=R(x)-C(x)$
The value of $x$ that maximizes the profit can be obtained by rewriting in the form
$R(x)=ax^2+bx+c$
This is the value at the axis of symmetry which is
$x=-dfrac{b}{2a}$
a) $P(x)=R(x)-C(x)$
$P(x)=-x^2+24x-(12x+28)$
$P(x)=-x^2+24x-12x-28$
profit function: $P(x)=-x^2+12x-28$
$a=-1$, $b=12$
$x=-dfrac{b}{2a}=-dfrac{12}{2(-1)}=6$
The maximum profit occurs when $x=6$
$P(x)=-2x^2+32x-(14x+45)$
$P(x)=-2x^2+32x-14x-45$
$P(x)=-2x^2+18x-45$
$a=-2$ , $b=18$
$x=-dfrac{b}{2a}=-dfrac{18}{2(-2)}=4.5$
The maximum profit occurs when $x=4.5$
$P(x)=-3x^2+26x-(8x+18)$
$P(x)=(-3x^2+26x)-(8x+18)$
$P(x)=-3x^2+26x-8x-18$
$P(x)=-3x^2+18x-18$
$a=-3$, $b=18$
$x=-dfrac{b}{2a}=-dfrac{18}{2(-3)}=3$
The maximum profit occurs when $x=3$
$P(x)=-2x^2+25x-(3x+17)$
$P(x)=-2x^2+25x-3x-17$
$P(x)=-2x^2+22x-17$
$a=-2$, $b=22$
$x=-dfrac{b}{2a}=-dfrac{22}{2(-2)}=5.5$
The maximum profit occurs when $x=5.5$
b) i) $P(x)=-2x^2+18x-45$ ; ii) $x=4.5$
c) i) $P(x)=-3x^2+18x-18$ ; ii) $x=3$
d) i) $P(x)=-2x^2+22x-17$ ; ii) $x=5.5$
$f(x)=ax^2+bx+c$
The value of $x$ that maximizes or minimizes $f(x)$ is
$x=-dfrac{b}{2a}$.
The maximum or minimum value of $f(x)$ is the value of $fleft(-dfrac{b}{2a}right)$.
a) From the given equation, $h(t)=-5t^2+20t+50$
$a=-5$, $b=20$ , $c=20$
The value of $t$ when $h(t)$ is maximum is
$t=-dfrac{b}{2a}=-dfrac{20}{2(-5)}=2$
The maximum height is
$h(2)=-5(2)^2+20(2)+50=70$
The maximum height is $70$ m.
b) The time it takes to reach the maximum height is
obtained in part(a) as $t=2$
$h(0)=-5(0)^2+20(0)+50$
$h(0)=50$
The rooftop is 50 meters high.
b) $t=2$ s
c) 50 m
$f(x)=ax^2+bx+c$
The value of $x$ which maximizes or minimizes $f(x)$ is
$x=-dfrac{b}{2a}$.
The maximum or minimum value of $f(x)$ is the value of $fleft(-dfrac{b}{2a}right)$.
a) From the given equation, $C(x)=0.28x^2-0.7x+1$
$a=0.28$, $b=-0.7$ , $c=1$
The value of $x$ when $C(x)$ is minimum is
$x=-dfrac{b}{2a}=-dfrac{-0.7}{2(0.28)}=1.25$
The minimum value is
$C(1.25)=0.28(1.25)^2-0.7(1.25)+1=0.5625$
Since the unit of $C(x)$ is million dollars, the minimum production cost is
$0.5625$ million dollars or $$562,500$
$562,500
$$
,$ is equivalent to
$$
begin{align*}
C(x)&=0.28x^2-0.7x+1
\
C(x)&=(0.28x^2-0.7x)+1
\
C(x)&=0.28(x^2-2.5x)+1
\
C(x)&=0.28(x^2-2.5x+1.5625)+1-0.28(1.5625)
\
C(x)&=0.28(x-1.25)^2+1-0.4375
\
C(x)&=0.28(x-1.25)^2+0.5625
.end{align*}
$$
Since the minimum of the quadratic function above is given by $k,$ then the minimum production cost is
$$
begin{align*}
0.5625 text{ million dollars}
.end{align*}
$$
0.5625 text{ million dollars}
$$
.$ In the form $y=a(x-h)^2+k,$ then
$$
begin{align*}
y&=(3x^2-6x)+5
\
y&=3(x^2-2x)+5
\
y&=3(x^2-2x+1)+5-3(1)
\
y&=3(x^2-2x+1)+5-3
\
y&=3(x-1)^2+2
.end{align*}
$$
Since $a>0$ ($a=3$), then the graph is a parabola that opens up. That is, the graph has a minimum value. Since the minimum of the quadratic equation, $y=a(x-h)^2+k,$ is given by $k,$ then the minimum of the equation above is $2.$ Hence, $y=3x^2-6x+5$ cannot be less than $1.$
$f(x)=ax^2+bx+c$
The value of $x$ which maximizes or minimizes $f(x)$ is
$x=-dfrac{b}{2a}$.
The maximum or minimum value of $f(x)$ is the value of $fleft(-dfrac{b}{2a}right)$.
a) From the given equation, $P(x)=-5x^2+400x-2550$
$a=-5$ , $b=400$ , $c=-2550$
The value of $x$ that maximizes the profit
$x=-dfrac{b}{2a}=-dfrac{400}{2(-5)}=40$
The maximum profit is the value of $P(x)$ when $x=40$
$P(40)=-5(40)^2+400(50)-2550=5450$
Since $P(x)$ has units of thousand dollars, the maximum profit is $$5,450,000$
Since the unit of $x$ is thousand dollars, this amount is $$40,000$
we must solve for $x$ such that $P(x)geq 4000$
$-5x^2+400x-2550geq 4000$
$-5x^2+400x-6550geq 0$
$-5(x^2-80x+1310)geq0$
If you multiply/divide both sides by negative number, the inequality symbol is reversed.
$x^2-80x+1310leq 0$
We shall solve the boundaries using quadratic formula
$a=1$, $b=-80$, $c=1310$
$x= dfrac{-bpmsqrt{b^2-4ac}}{2a}$
$x= dfrac{-(-80)pmsqrt{(-80)^2-4(1)(1310)}}{2(1)} =40 pm sqrt{290}$
$x=57.03$ or $x=22.97$
Since $a=1$, the quadratic inequality opens upward. Thus,
$x^2-80x+1310leq 0$ if $x$ is from $x=22.97$ to $x=57.03$.
Therefore, to make sure that you get the desired profit, you must spend at least $$22,971$ but not more than $$57,029$.
b) Spend $$40,000$ for maximum profit.
c) Spend at least $$22,971$ but not more than $$57,029$
,$ is equivalent to
$$
begin{align*}
P(x)&=(-5x^2+400x)-2550
\
P(x)&=-5(x^2-80x)-2550
\
P(x)&=-5(x^2-80x+1600)-2550+5(1600)
\
P(x)&=-5(x-40)^2-2550+8000
\
P(x)&=-5(x-40)^2+5450
.end{align*}
$$
Since $a<0$ ($a=-5$), then the graph is a parabola that opens down. That is, the graph has a maximum value.
a) Since the maximum of the quadratic equation, $y=a(x-h)^2+k,$ is given by $k,$ then the maximum of the equation above is $5,450.$ Hence, the maximum profit the company can make is $5,450 text{ thousand dollars}$ or $$5,450,000$.
.$
$$
begin{align*}
-5x^2+400x-2550&ge4000
\
dfrac{-5x^2+400x-2550}{-5}&gedfrac{4000}{-5}
\
x^2-80x+510&le-800
text{ (reverse the inequality)}
\
x^2-80x+1310&le0
.end{align*}
$$
Solving for $x$ results to $14.2le xle65.8
.$ Hence, the amount, $x,$ to be spent on advertising to obtain a profit of at least $$4,000,000$ is
$14.2$ to $65.8$ thousand dollars or $$14,200-$65,800
.$
b) $$40,000$
c) $$14,200-$65,800$
Perimeter = $2w+picdot h$
The track coach wants this perimeter to be equal to $500$ (since two lapses should be 1000) while the football coach wants to maximize the area of the rectangular infield which is $hcdot w$
Perimeter = $2w+pi cdot h = 1000implies h=dfrac{500-2w}{pi}$
Area of rectangular field = $hw=left(dfrac{500-2w}{pi}right)(w)$
Area = $A(w)=dfrac{1}{pi}(500w-2w^2)$
We shall write the area in the form $f(x)=ax^2+bx+c$
$A(w)=-dfrac{2}{pi}w^2+dfrac{500}{pi}w$
$a=-dfrac{2}{pi}$ , $b=dfrac{500}{pi}$ , $c=0$
The value of $w$ that will maximize the area is $w=-dfrac{b}{2a}$
$w=dfrac{-b}{2a}=-dfrac{500/pi}{2(2/pi)}=125$ meters
$h=dfrac{500-2w}{pi}=dfrac{500-2(125)}{pi}=dfrac{250}{pi}$ meters
$h=-dfrac{b}{2a}$
$k=fleft(dfrac{-b}{2a}right)$
The minimum value is $k$.
In this case, $a=3$, $b=-7$ , $c=2$
$h=-dfrac{b}{2a}=-dfrac{-7}{2(3)}=dfrac{7}{6}$
minimum value: $k=fleft(dfrac{7}{6}right)=3left(dfrac{7}{6}right)^2-7left(dfrac{7}{6}right)+2=-dfrac{25}{12}$
$f(x)=3x^2-7x+2$
$f(x)=(3x-1)(x-2)$
$3x-1=0implies x=dfrac{1}{3}$
$x-2=0implies x=2$
The axis of symmetry is therefore
$h=dfrac{1/3+2}{2}=dfrac{7}{6}$
To obtain the minimum value, find $fleft(dfrac{7}{6}right)$
$k=fleft(dfrac{7}{6}right)=3left(dfrac{7}{6}right)^2-7left(dfrac{7}{6}right)+2=-dfrac{25}{12}$
Method 4: You can use graphing calculator and find the vertex $(h,k)$. The minimum value is the value of $k$.
$f(x)=3x^2-7x+2$
$f(x)=3left(x^2-dfrac{7}{3}xright)+2$
$f(x)=3left[x^2-dfrac{7}{3}x+left(dfrac{7/3}{2}right)^2right]+2-3left(dfrac{7/3}{2}right)^2$
$f(x)=3left[x-left(dfrac{7}{6}right)^2right]-dfrac{25}{12}$
The minimum value is $-dfrac{25}{12}$
Method 2: Find the zeroes using factoring, the value of $x$ halfway to the two zeroes is the axis of symmetry. The minimum value is the value of the function at the axis of symmetry.
Method 3: Use quadratic formula instead of factoring to find the zeroes.
Method 4: Use your graphing calculator to find the minimum value.
Method 5: Use completing the square and write in the form $y=a(x-h)^2+k$
$f(x)=ax^2+bx+c$
The value of $x$ which maximizes or minimizes $f(x)$ is
$x=-dfrac{b}{2a}$.
The maximum or minimum value of $f(x)$ is the value of $fleft(-dfrac{b}{2a}right)$.
In this case, $a=-4.9$, $b=v_0$ , $c=h_0$
The value of $t$ that corresponds to the maximum height is
$t=-dfrac{b}{2a}=-dfrac{v_0}{2(-4.9)}=dfrac{v_0}{9.8}$ seconds
$f(x)=ax^2+bx+c$
The value of $x$ which maximizes or minimizes $f(x)$ is
$x=-dfrac{b}{2a}$.
The maximum or minimum value of $f(x)$ is the value of $fleft(-dfrac{b}{2a}right)$.
For every $$1$ increase in the price, 30 fewer students attend the dance.
Let $x$ be the increase in price.
ticket price = $8+x$
attending students = $300-30x$
The revenue is the product of ticket price and number of attending students
$R(x)=(8+x)(300-30x)$
We can solve for the zeroes since it is in factored form
$x+8=0implies x=-8$ , $300-30x=0implies x=10$
The axis of symmetry is $x=dfrac{-8+10}{2}=1$
Therefore, the ticket price must be sold at
$$
8+x=8+1=$9
$$
$9
$$