Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Section 2-6: Multiplying and Dividing Rational Expressions

Exercise 1
Step 1
1 of 6
In the following exercises involving multiplication or division of rational numbers, remember the following algebraic rules:

$$
begin{equation*} dfrac{a}{b}times dfrac{c}{d}=dfrac{ac}{bd} end{equation*}
$$

$$
begin{equation*}dfrac{a}{b}div dfrac{c}{d}=dfrac{a}{b}times dfrac{d}{c}=dfrac{ad}{bc} end{equation*}
$$

$$
begin{equation*}dfrac{ab}{ac}=dfrac{b}{c}end{equation*}
$$

$$
begin{equation*}x^atimes x^b=x^{a+b}end{equation*}
$$

$$
begin{equation*} dfrac{x^a}{x^b}=x^{a-b} end{equation*}
$$

The values of variables that would make the denominator zero in the original expression are the restrictions on the variable of the simplified expression.

Step 2
2 of 6
$$
begin{align*}
bold{a);;} dfrac{2}{3}times dfrac{5}{8} &=dfrac{(2)(5)}{(3)(8)}\\ &=dfrac{10}{24}\\ &=dfrac{5(2)}{12(2)}\\ &=dfrac{5}{12}end{align*}
$$
Step 3
3 of 6
$$
begin{align*}
bold{b);;} dfrac{6x^2y}{5y^3}times dfrac{xy}{8}&=dfrac{(6x^2y)(xy)}{(5y^3)(8)}\\&=dfrac{6x^3y^2}{40y^3}\\&=dfrac{6x^3y^{2-3}}{40}\\&=dfrac{6x^3}{40y}\\&=dfrac{(2)(3)x^3}{2(20)y}\\&=dfrac{3x^3}{20y};; ;;; y neq 0
end{align*}
$$
Step 4
4 of 6
$$
begin{align*}
bold{c);;} frac{(x+1)(x-5)}{(x+4)}times frac{(x+4)}{2(x-5)} &= dfrac{(x+1)(x-5)(x+4)}{(x+4)(2)(x-5)}\\
&=dfrac{(x+1)cancel{(x-5)}cancel{(x+4)}}{cancel{(x+4)}(2)cancel{(x-5)}}\\&=dfrac{x+1}{2}; ;;xneq -4,;5end{align*}
$$
Step 5
5 of 6
$$
begin{align*}
bold{d);;} frac{x^2}{2x+1}timesfrac{6x+3}{5x}&=frac{(x^2(6x+3)}{(2x+1)(5x)} \\
&=frac{x^2(3)(2x+1)}{(2x+1)(5x)}\\&=frac{x^2(3)cancel{(2x+1)}}{cancel{(2x+1)}(5x)}\\&=frac{3x^2}{5x}\\&=frac{3x^{2-1}}{5}\\&=frac{3x}{5} ;; ; ;; xneq -frac{1}{2}, ;0 end{align*}
$$
Result
6 of 6
a) $dfrac{5}{12}$

b) $dfrac{3x^3}{20y}$ ; $yneq 0$

c) $dfrac{x+1}{2}$ , $xneq -4,;5$

d) $dfrac{3x}{5}$ , $xneq -dfrac{1}{2},;0$

Exercise 2
Step 1
1 of 6
In the following exercises involving multiplication or division of rational numbers, remember the following algebraic rules:

$$
begin{equation*} dfrac{a}{b}times dfrac{c}{d}=dfrac{ac}{bd} end{equation*}
$$

$$
begin{equation*}dfrac{a}{b}div dfrac{c}{d}=dfrac{a}{b}times dfrac{d}{c}=dfrac{ad}{bc} end{equation*}
$$

$$
begin{equation*}dfrac{ab}{ac}=dfrac{b}{c}end{equation*}
$$

$$
begin{equation*}x^atimes x^b=x^{a+b}end{equation*}
$$

$$
begin{equation*} dfrac{x^a}{x^b}=x^{a-b} end{equation*}
$$

The values of variables that would make the denominator zero in the original expression are the restrictions on the variable of the simplified expression.

Step 2
2 of 6
$$
begin{align*}
bold{a);;} dfrac{2x}{3}div dfrac{x^2}{5} &= dfrac{2x}{3}times dfrac{5}{x^2} \\
&= dfrac{(2x)(5)}{3(x^2)}\\
&=dfrac{10x}{3x^2}\\
&=dfrac{10x^{1-2}}{3}\\
&=dfrac{10x^{-1}}{3}\\
&=dfrac{10}{3x} ;; ; ;; xneq 0
end{align*}
$$
Step 3
3 of 6
$$
begin{align*}
bold{b);;;} frac{x-7}{10}divdfrac{2x-14}{25} &= dfrac{x-7}{10}timesdfrac{25}{2x-14} \\
&=dfrac{(x-7)(25)}{10(2x-14)}\\ &=frac{(x-7)(25)}{10(2)(x-7)}\\ &=frac{cancel{(x-7)}(25)}{10(2)cancel{(x-7)}}\
&=frac{25}{20}\\ &=frac{5(5)}{5(4)} \\&=frac{5}{4} ;; ;;; xneq 7
end{align*}
$$
Step 4
4 of 6
$$
begin{align*}
bold{c);;} dfrac{3x(x-6)}{(x+2)(x-7)}div dfrac{x-6}{x+2} &=frac{3x(x-6)}{(x+2)(x-7)}times frac{(x+2)}{(x-6)} \\
&=dfrac{3x(x-6)(x+2)}{(x+2)(x-7)(x-6)}\\&=dfrac{3xcancel{(x-6)}cancel{(x+2)}}{cancel{(x+2)}(x-7)cancel{(x-6)}}\\
&=dfrac{3x}{x-7} ;; ; ;; xneq -2,7,6end{align*}
$$
Step 5
5 of 6
$$
begin{align*}
bold{d);;} dfrac{x^2-1}{x-1}div dfrac{x+1}{12-6x}&=dfrac{x^2-1}{x-2}times dfrac{12-6x}{x+1} \\
&=dfrac{(x^2-1)(12-6x)}{(x-2)(x+1)}\\ &=dfrac{(x+1)(x-1)(6)(2-x)}{(x-2)(x+1)}\\ &=dfrac{cancel{(x+1)}(x-1)(6)(2-x)}{(x-2)cancel{(x+1)}}\\&=dfrac{(x-1)(6)(2-x)}{x-2}\\&=dfrac{(x-1)(-6)(x-2)}{x-2}\\&=dfrac{(x-1)(-6)cancel{(x-2)}}{cancel{(x-2)}}\\&=(-6)(x-1)\\&=6(1-x) ;; ; ;; xneq 2,;-1 end{align*}
$$
Result
6 of 6
a) $dfrac{10}{3x}$ , $xneq 0$

b) $dfrac{5}{4}$ , $xneq 7$

c) $dfrac{3x}{x-7}$ , $xneq -2, 6,7$

d) $6(1-x)$ ; $xneq 2,-1$

Exercise 3
Step 1
1 of 3
a) The factored form of the given expression, $dfrac{(x+1)^2}{x^2+2x-3}timesdfrac{(x-1)^2}{x^2+4x+3}
,$ is

$$
begin{align*}
&
dfrac{(x+1)(x+1)}{(x+3)(x-1)}cdotdfrac{(x-1)(x-1)}{(x+3)(x+1)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&dfrac{(cancel{x+1})(x+1)}{(x+3)(cancel{x-1})}cdotdfrac{(cancel{x-1})(x-1)}{(x+3)(cancel{x+1})}
\\&=
dfrac{(x+1)(x-1)}{(x+3)(x+3)}
\\&=
dfrac{x^2-1}{x^2+6x+9}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x^2-1}{x^2+6x+9}
text{, }xne{-3,-1,1,3}
.$

Step 2
2 of 3
b) The factored form of the given expression, $dfrac{2x+10}{x^2-4x+4}divdfrac{x^2-25}{x-2}
,$ is

$$
begin{align*}
&
dfrac{2x+10}{x^2-4x+4}cdotdfrac{x-2}{x^2-25}
\\&=
dfrac{2(x+5)}{(x-2)(x-2)}cdotdfrac{x-2}{(x-5)(x+5)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{x+5})}{(cancel{x-2})(x-2)}cdotdfrac{cancel{x-2}}{(x-5)(cancel{x+5})}
\\&=
dfrac{2}{(x-2)(x-5)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2}{(x-2)(x-5)}
text{, }xne{ -5,2,5}
.$

Result
3 of 3
a) $dfrac{x^2-1}{x^2+6x+9}
text{, }xne{-3,-1,1,3}$

b) $dfrac{2}{(x-2)(x-5)}
text{, }xne{ -5,2,5}$

Exercise 4
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{2x^2}{7}timesdfrac{21}{x}
,$ is

$$
begin{align*}
&
dfrac{2xcdot x}{7}timesdfrac{3cdot7}{x}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2xcdot cancel{x}}{cancel7}timesdfrac{3cdotcancel7}{cancel{x}}
\\&=
6x
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $6x
text{, }xne0
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{7a}{3}divdfrac{14a^2}{5}
,$ is

$$
begin{align*}
&
dfrac{7a}{3}cdotdfrac{5}{14a^2}
\\&=
dfrac{7a}{3}cdotdfrac{5}{7acdot2a}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{7a}}{3}cdotdfrac{5}{cancel{7a}cdot2a}
\\&=
dfrac{5}{6a}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{5}{6a}
text{, }ane0
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2x^3y}{3xy^2}timesdfrac{9x}{4x^2y}
,$ is

$$
begin{align*}
&
dfrac{2x^2ycdot x}{3xcdot y^2}timesdfrac{3xcdot3}{2x^2ycdot2}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{2x^2y}cdot x}{cancel{3x}cdot y^2}timesdfrac{cancel{3x}cdot3}{cancel{2x^2y}cdot2}
\\&=
dfrac{3x}{2y^2}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{3x}{2y^2}
text{, }xne0text{, }yne0
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{3a^2b^3}{2ab^2}divdfrac{9a^2b}{14a^2}
,$ is

$$
begin{align*}
&
dfrac{3a^2b^3}{2ab^2}cdotdfrac{14a^2}{9a^2b}
\\&=
dfrac{3a^2bcdot b^2}{2acdot b^2}cdotdfrac{2acdot7a}{3a^2bcdot3}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{3a^2b}cdot cancel{b^2}}{cancel{2a}cdot cancel{b^2}}cdotdfrac{cancel{2a}cdot7a}{cancel{3a^2b}cdot3}
\\&=
dfrac{7a}{3}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{7a}{3}
text{, }ane0text{, }bne0
.$

Result
5 of 5
a) $6x
text{, }xne0$

b) $dfrac{5}{6a}
text{, }ane0$

c) $dfrac{3x}{2y^2}
text{, }xne0text{, }yne0$

d) $dfrac{7a}{3}
text{, }ane0text{, }bne0$

Exercise 5
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{2(x+1)}{3}timesdfrac{x-1}{6(x+1)}
,$ is

$$
begin{align*}
&
dfrac{2(x+1)}{3}cdotdfrac{x-1}{2(x+1)cdot3}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{2(x+1)}}{3}cdotdfrac{x-1}{cancel{2(x+1)}cdot3}
\\&=
dfrac{x-1}{9}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x-1}{9}
text{, }xne-1
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{3a-6}{a+2}divdfrac{a-2}{a+2}
,$ is

$$
begin{align*}
&
dfrac{3a-6}{a+2}cdotdfrac{a+2}{a-2}
\\&=
dfrac{3(a-2)}{a+2}cdotdfrac{a+2}{a-2}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{3(cancel{a-2})}{cancel{a+2}}cdotdfrac{cancel{a+2}}{cancel{a-2}}
\\&=
3
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $3
text{, }ane{ -2,2 }
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2(x-2)}{9x^3}timesdfrac{12x^4}{2-x}
,$ is

$$
begin{align*}
&
dfrac{2(x-2)}{3x^3cdot3}cdotdfrac{3x^3cdot4x}{-1(x-2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{x-2})}{cancel{3x^3}cdot3}cdotdfrac{cancel{3x^3}cdot4x}{-1(cancel{x-2})}
\\&=
dfrac{8x}{-3}
\\&=
-dfrac{8x}{3}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $-dfrac{8x}{3}
text{, }xne{ 0,2 }
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{3(m+4)^2}{2m+1}divdfrac{5(m+4)}{7m+14}
,$ is

$$
begin{align*}
&
dfrac{3(m+4)^2}{2m+1}cdotdfrac{7m+14}{5(m+4)}
\\&=
dfrac{3(m+4)(m+4)}{2m+1}cdotdfrac{7(m+2)}{5(m+4)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{3(m+4)(cancel{m+4})}{2m+1}cdotdfrac{7(m+2)}{5(cancel{m+4})}
\\&=
dfrac{3(m+4)(7)(m+2)}{5(2m+1)}
\\&=
dfrac{21(m+4)(m+2)}{5(2m+1)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{21(m+4)(m+2)}{5(2m+1)}
text{, }mneleft{ -4,-2,-dfrac{1}{2} right}
.$

Result
5 of 5
a) $dfrac{x-1}{9}
text{, }xne-1$

b) $3
text{, }ane{ -2,2 }$

c) $-dfrac{8x}{3}
text{, }xne{ 0,2 }$

d) $dfrac{21(m+4)(m+2)}{5(2m+1)}
text{, }mneleft{ -4,-2,-dfrac{1}{2} right}$

Exercise 6
Step 1
1 of 5
a) Cancelling the common factors between the numerator and the denominator, the given expression, $dfrac{(x+1)(x-3)}{(x+2)^2}timesdfrac{2(x+2)}{(x-3)(x+3)}
,$ is equivalent to

$$
begin{align*}
&
dfrac{(x+1)(cancel{x-3})}{(x+2)^{cancel21}}timesdfrac{2(cancel{x+2})}{(cancel{x-3})(x+3)}
\\&=
dfrac{2(x+1)}{(x+2)(x+3)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2(x+1)}{(x+2)(x+3)}
text{, }xne{ -3,-2,3}
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{2(n^2-7n+12)}{n^2-n-6}divdfrac{5(n-4)}{n^2-4}
,$ is

$$
begin{align*}
&
dfrac{2(n^2-7n+12)}{n^2-n-6}cdotdfrac{n^2-4}{5(n-4)}
\\&=
dfrac{2(n-3)(n-4)}{(n-3)(n+2)}cdotdfrac{(n+2)(n-2)}{5(n-4)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{2(cancel{n-3})(cancel{n-4})}{(cancel{n-3})(cancel{n+2})}cdotdfrac{(cancel{n+2})(n-2)}{5(cancel{n-4})}
\\&=
dfrac{2(n-2)}{5}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{2(n-2)}{5}
text{, }nneleft{ -2,2,3,4 right}
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{2x^2-x-1}{x^2-x-6}timesdfrac{6x^2-5x+1}{8x^2+14x+5}
,$ is

$$
begin{align*}
&
dfrac{(2x+1)(x-1)}{(x-3)(x+2)}timesdfrac{(6x+1)(x-1)}{(4x+5)(2x+1)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{2x+1})(x-1)}{(x-3)(x+2)}timesdfrac{(6x+1)(x-1)}{(4x+5)(cancel{2x+1})}
\\&=
dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
text{, }xneleft{ -dfrac{5}{4},-2,-dfrac{1}{2},3 right}
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{9y^2-4}{4y-12}divdfrac{9y^2+12y+4}{18-6y}
,$ is

$$
begin{align*}
&
dfrac{9y^2-4}{4y-12}cdotdfrac{18-6y}{9y^2+12y+4}
\\&=
dfrac{(3y+2)(3y-2)}{4(y-3)}cdotdfrac{6(3-y)}{(3y+2)(3y+2)}
\\&=
dfrac{(3y+2)(3y-2)}{4(y-3)}cdotdfrac{-6(y-3)}{(3y+2)(3y+2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{3y+2})(3y-2)}{cancel2cdot2(cancel{y-3})}cdotdfrac{cancel2cdot(-3)(cancel{y-3})}{(cancel{3y+2})(3y+2)}
\\&=
dfrac{-3(3y-2)}{2(3y+2)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{-3(3y-2)}{2(3y+2)}
text{, }yneleft{ -dfrac{2}{3}, 3 right}
.$

Result
5 of 5
a) $dfrac{2(x+1)}{(x+2)(x+3)}
text{, }xne{ -3,-2,3}$

b) $dfrac{2(n-2)}{5}
text{, }nneleft{ -2,2,3,4 right}$

c) $dfrac{(x-1)(x-1)(6x+1)}{(x-3)(x+2)(4x+5)}
text{, }xneleft{ -dfrac{5}{4},-2,-dfrac{1}{2},3 right}$

d) $dfrac{-3(3y-2)}{2(3y+2)}
text{, }yneleft{ -dfrac{2}{3}, 3 right}$

Exercise 7
Step 1
1 of 5
a) The factored form of the given expression, $dfrac{x^2-5xy+4y^2}{x^2+3xy-28y^2}timesdfrac{x^2+2xy+y^2}{x^2-y^2}
,$ is

$$
begin{align*}
&
dfrac{(x-4y)(x-y)}{(x+7y)(x-4y)}cdotdfrac{(x+y)(x+y)}{(x+y)(x-y)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{x-4y})(cancel{x-y})}{(x+7y)(cancel{x-4y})}cdotdfrac{(cancel{x+y})(x+y)}{(cancel{x+y})(cancel{x-y})}
\\&=
dfrac{x+y}{x+7y}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{x+y}{x+7y}
text{, }xne-7ytext{, }xne4ytext{, }xne ytext{, }xne-y
.$

Step 2
2 of 5
b) The factored form of the given expression, $dfrac{2a^2-12ab+18b^2}{a^2-7ab+10b^2}divdfrac{4a^2-12ab}{a^2-7ab+10b^2}
,$ is

$$
begin{align*}
&
dfrac{2a^2-12ab+18b^2}{a^2-7ab+10b^2}cdotdfrac{a^2-7ab+10b^2}{4a^2-12ab}
\\&=
dfrac{2(a^2-6ab+9b^2)}{(a-5b)(a-2b)}cdotdfrac{(a-2b)(a-5b)}{4a(a-3b)}
\\&=
dfrac{2(a-3b)(a-3b)}{(a-5b)(a-2b)}cdotdfrac{(a-2b)(a-5b)}{4a(a-3b)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel2(cancel{a-3b})(a-3b)}{cancel{(a-5b)(a-2b)}}cdotdfrac{cancel{(a-5b)(a-2b)}}{cancel2cdot2a(cancel{a-3b})}
\\&=
dfrac{a-3b}{2a}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{a-3b}{2a}
text{, }ane0text{, }ane5btext{, }ane2btext{, }ane3b
.$

Step 3
3 of 5
c) The factored form of the given expression, $dfrac{10x^2+3xy-y^2}{9x^2-y^2}divdfrac{6x^2+3xy}{12x+4y}
,$ is

$$
begin{align*}
&
dfrac{10x^2+3xy-y^2}{9x^2-y^2}cdotdfrac{12x+4y}{6x^2+3xy}
\\&=
dfrac{(5x-y)(2x+y)}{(3x+y)(3x-y)}cdotdfrac{4(3x+y)}{3x(2x+y)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(5x-y)(cancel{2x+y})}{(cancel{3x+y})(3x-y)}cdotdfrac{4(cancel{3x+y})}{3x(cancel{2x+y})}
\\&=
dfrac{4(5x-y)}{3x(3x-y)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{4(5x-y)}{3x(3x-y)}
text{, }xneleft{ -dfrac{y}{2},-dfrac{y}{3}, 0,dfrac{y}{3} right}
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{15m^2+mn-2n^2}{2n-14m}timesdfrac{7m^2-8mn+n^2}{5m^2+7mn+2n^2}
,$ is

$$
begin{align*}
&
dfrac{(3m-n)(5m+2n)}{2(n-7m)}timesdfrac{(7m-n)(m-n)}{(5m+2n)(m+n)}
\\&=
dfrac{(3m-n)(5m+2n)}{-2(7m-n)}timesdfrac{(7m-n)(m-n)}{(5m+2n)(m+n)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(3m-n)(cancel{5m+2n})}{-2(cancel{7m-n})}timesdfrac{(cancel{7m-n})(m-n)}{(cancel{5m+2n})(m+n)}
\\&=
dfrac{(3m-n)(m-n)}{-2(m+n)}
\\&=
-dfrac{(3m-n)(m-n)}{2(m+n)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $-dfrac{(3m-n)(m-n)}{2(m+n)}
text{, }mneleft{ -dfrac{2n}{5},-n,dfrac{n}{7} right}
.$

Result
5 of 5
a) $dfrac{x+y}{x+7y}
text{, }xne-7ytext{, }xne4ytext{, }xne ytext{, }xne-y$

b) $dfrac{a-3b}{2a}
text{, }ane0text{, }ane5btext{, }ane2btext{, }ane3b$

c) $dfrac{4(5x-y)}{3x(3x-y)}
text{, }xneleft{ -dfrac{y}{2},-dfrac{y}{3}, 0,dfrac{y}{3} right}$

d) $-dfrac{(3m-n)(m-n)}{2(m+n)}
text{, }mneleft{ -dfrac{2n}{5},-n,dfrac{n}{7} right}$

Exercise 8
Step 1
1 of 2
The factored form of the given expression, $dfrac{x^2+x-6}{(2x-1)^2}timesdfrac{x(2x-1)^2}{x^2+2x-3}divdfrac{x^2-4}{3x}
,$ is

$$
begin{align*}
&
dfrac{x^2+x-6}{(2x-1)^2}timesdfrac{x(2x-1)^2}{x^2+2x-3}cdotdfrac{3x}{x^2-4}
\\&=
dfrac{(x+3)(x-2)}{(2x-1)^2}timesdfrac{x(2x-1)^2}{(x+3)(x-1)}cdotdfrac{3x}{(x+2)(x-2)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{(cancel{x+3})(cancel{x-2})}{cancel{(2x-1)^2}}timesdfrac{xcancel{(2x-1)^2}}{(cancel{x+3})(x-1)}cdotdfrac{3x}{(x+2)(cancel{x-2})}
\\&=
dfrac{3x^2}{(x-1)(x+2)}
.end{align*}
$$

Since the denominator of the original expression cannot be zero, then the simplified form of the given expression with its restriction is $dfrac{3x^2}{(x-1)(x+2)}
text{, }xneleft{ -3,-2,dfrac{1}{2},1,2 right}
.$

Result
2 of 2
$$
dfrac{3x^2}{(x-1)(x+2)}
text{, }xneleft{ -3,-2,dfrac{1}{2},1,2 right}
$$
Exercise 9
Step 1
1 of 2
Using $A=dfrac{bh}{2}
,$ or the formula for the area of a triangle, with a height of $dfrac{5x-35}{x+3}$ and a base of $dfrac{4x^2}{x^2-16x+63}
,$ then the area is

$$
begin{align*}
A&=dfrac{left(dfrac{4x^2}{x^2-16x+63}right)left(dfrac{5x-35}{x+3}right)}{2}
.end{align*}
$$

The factored form of the expression above is

$$
begin{align*}
A&=left(dfrac{4x^2}{(x-9)(x-7)}right)left(dfrac{5(x-7)}{x+3}right)div2
\\
A&=left(dfrac{4x^2}{(x-9)(x-7)}right)left(dfrac{5(x-7)}{x+3}right)left(dfrac{1}{2}right)
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
A&=left(dfrac{cancel{2}(2)x^2}{(x-9)(cancel{x-7})}right)left(dfrac{5(cancel{x-7})}{x+3}right)left(dfrac{1}{cancel{2}}right)
\\
A&=dfrac{10x^2}{(x-9)(x+3)}
.end{align*}
$$

Since the denominator of the original equation cannot be zero, then the area of the triangle, $A,$ with its restriction is $A=dfrac{10x^2}{(x-9)(x+3)}
text{, }xneleft{ -3,7,9 right}
.$

Result
2 of 2
$$
A=dfrac{10x^2}{(x-9)(x+3)}
text{, }xneleft{ -3,7,9 right}
$$
Exercise 10
Step 1
1 of 3
Using $rho=dfrac{m}{v}
,$ or the formula for density, with a mass of $dfrac{p+1}{3p+1}$ and a density of $dfrac{p^2-1}{9p^2+6p+1}
,$ then the volume is

$$
begin{align*}
dfrac{p^2-1}{9p^2+6p+1}&=dfrac{dfrac{p+1}{3p+1}}{v}
\\
vqty(dfrac{p^2-1}{9p^2+6p+1})&=qty(dfrac{dfrac{p+1}{3p+1}}{v})v
\\
vqty(dfrac{p^2-1}{9p^2+6p+1})&=dfrac{p+1}{3p+1}
\\
v&=dfrac{frac{p+1}{3p+1}}{frac{p^2-1}{9p^2+6p+1}}
\\&=
dfrac{p+1}{3p+1}divdfrac{p^2-1}{9p^2+6p+1}
\\&=
dfrac{p+1}{3p+1}cdotdfrac{9p^2+6p+1}{p^2-1}
\\&=
dfrac{p+1}{3p+1}cdotdfrac{(3p+1)(3p+1)}{(p+1)(p-1)}
.end{align*}
$$

Step 2
2 of 3
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
v&=dfrac{p+1}{1}cdotdfrac{(1)(3p+1)}{(p+1)(p-1)}
&qty(text{cancel $3p+1$})
\\&=
dfrac{1}{1}cdotdfrac{(1)(3p+1)}{(1)(p-1)}
&qty(text{cancel $p+1$})
\\&=
dfrac{3p+1}{p-1}
.end{align*}
$$

Since the denominators of both the original and simplified equations cannot be zero, then the volume, $v,$ with its restriction is $v=dfrac{3p+1}{p-1}
text{, }pneleft{ -1,-dfrac{1}{3} ,1right}
.$

Result
3 of 3
$$
v=dfrac{3p+1}{p-1}
text{, }pneleft{ -1,-dfrac{1}{3} ,1right}
$$
Exercise 11
Step 1
1 of 1
The error is in the third step when the expression $x^2-y^2$ was divided by $(x-y).$ This is not allowed because the value of $(x-y)$ is zero which will cause division by zero, and hence, will make the expression undefined.
Exercise 12
Step 1
1 of 4
a) All numerators and denominators should be factored first so that any common factor between the numerator and the denominator can already be cancelled. This will make multiplication of the remaining numerators and denominators less complicated.
Step 2
2 of 4
b) Factoring the numerators and denominators of rational expressions (whenever possible) is the best approach in simplifying rational expressions. The only time that this approach will not apply is when none of the expressions can be factored out or when there is no common factor between the numerator and the denominator that can be cancelled.
Step 3
3 of 4
c) Yes this is true, since division of rational expressions is equivalent to multiplying by the reciprocal of the divisor.
Result
4 of 4
a) This can be simplified by cancelling common factors.

b) Sometimes, there are no common factors and you have to make sure that the factors which are cancelled are not equal to zero.

c) Yes

Exercise 13
Step 1
1 of 2
The given expression, $dfrac{dfrac{m^2-mn}{6m^2+11mn+3n^2}divdfrac{m^2-n^2}{2m^2-mn-6n^2}}{dfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}}
,$ is equivalent to

$$
begin{align*}
&
dfrac{m^2-mn}{6m^2+11mn+3n^2}divdfrac{m^2-n^2}{2m^2-mn-6n^2}divdfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}
\\&=
dfrac{m^2-mn}{6m^2+11mn+3n^2}cdotdfrac{2m^2-mn-6n^2}{m^2-n^2}divdfrac{4m^2-7mn-2n^2}{3m^2+7mn+2n^2}
\\&=
dfrac{m^2-mn}{6m^2+11mn+3n^2}cdotdfrac{2m^2-mn-6n^2}{m^2-n^2}cdotdfrac{3m^2+7mn+2n^2}{4m^2-7mn-2n^2}
.end{align*}
$$

The factored form of the expression above is

$$
begin{align*}
&
dfrac{m(m-n)}{(3m+n)(2m+3n)}cdotdfrac{(2m+3n)(m-2n)}{(m+n)(m-n)}cdotdfrac{(3m+n)(m+2n)}{(4m+n)(m-2n)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{m(cancel{m-n})}{(cancel{3m+n})(cancel{2m+3n})}cdotdfrac{(cancel{2m+3n})(cancel{m-2n})}{(m+n)(cancel{m-n})}cdotdfrac{(cancel{3m+n})(m+2n)}{(4m+n)(cancel{m-2n})}
\\&=
dfrac{m(m+2n)}{(m+n)(4m+n)}
.end{align*}
$$

Since the denominator of the original equation cannot be zero, then the simplified form with its restriction is $dfrac{m(m+2n)}{(m+n)(4m+n)}
text{, }mneleft{ -2n, -n,-dfrac{n}{4},-dfrac{n}{3},-dfrac{3n}{2},n,2n right}
.$

Result
2 of 2
$$
dfrac{m(m+2n)}{(m+n)(4m+n)}
text{, }mneleft{ -2n, -n,-dfrac{n}{4},-dfrac{n}{3},-dfrac{3n}{2},n,2n right}
$$
Exercise 14
Step 1
1 of 3
We are given the equation for Newton’s law of gravitation

$$
begin{equation*} F_g=Gdfrac{m_1m_2}{r^2} end{equation*}
$$

$$
begin{align*} text{ } m_1,;m_2 &= text{mass; of; two; objects}\
G &= text{gravitational; constant}\
r &= text{distance between } m_1 text{ and } m_2
end{align*}
$$

The mass of Mercury $m_M$ is 2.2 times greater than the mass of Pluto $m_P$ which implies

$$
begin{equation*} m_M=2.2m_Pend{equation*}
$$

Meanwhile, Pluto’s distance from the sun $r_P$ is 102.1 times as much as that of Mercury $r_M$ which implies

$$
begin{equation*} r_P=102.1 r_Mend{equation*}
$$

We would like to find the ratio of Sun’s gravitational forces of Mercury to that of Pluto, that is, $dfrac{F_{g,M}}{F_{g,P}}$

Step 2
2 of 3
Let $m_S$ be the mass of the sun.

The gravitational force on Mercury is
$$
begin{equation*}F_{g,M}=dfrac{Gm_Sm_M}{r_M^2}end{equation*}
$$

Since $m_P=dfrac{m_M}{2.2}$ and $r_P=102.1r_M$, the gravitational force on Pluto is

$$
begin{equation*}F_{g,P}=dfrac{Gm_Sm_P}{r_P^2}=dfrac{Gm_S(m_M/2.2)}{(102.1r_M)^2}=dfrac{1/2.2}{102.1^2}dfrac{Gm_Sm_M}{r_M^2}end{equation*}
$$

Therefore

$$
begin{equation*}F_{g,P}=dfrac{1/2.2}{102.1^2}F_{g,M}implies dfrac{F_{g,M}}{F_{g,P}}=dfrac{102.1^2}{1/2.2}=22933.7end{equation*}
$$

Result
3 of 3
The sun’s gravitational force on Mercury is 22933.7 times as much as that on Pluto.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review