Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Section 2-2: Multiplying Polynomials

Exercise 1
Step 1
1 of 5
$bold{a)};;;$ $2x(3x-5x^2+5y)$

$=2x(3x)+2x(-5x^2)+2x(4y)$

$$
= 6x-10x^3+8xy
$$

Apply distributive property,

$a(b+c)=ab+ac$

Step 2
2 of 5
$bold{b)};;;$ $(3x-4)(2x+5)$

$=(3x-4)(2x)+(3x-4)(5)$

$=[(3x)(2x)-4(2x)]+[(3x)(5)-4(5)]$

$=(6x^2-8x)+(15x-20)$

$=6x^2+7x-20$

Apply distributive property,

$$
(a+b)(c+d)=(a+b)(c)+(a+b)(d)
$$

Step 3
3 of 5
$bold{c);;;}$ $(x+4)^2$

$=(x)^2+2(x)(4)+(4)^2$

$=x^2+8x+16$

You may use special product formula:

$(a+b)^2=a^2+2ab+b^2$

Step 4
4 of 5
$bold{d);;;}$ $(x+1)(x^2+2x-3)$

$=(x+1)(x^2)+(x+1)(2x)+(x+1)(-3)$

$=(x^3+x^2)+(2x^2+2x)+(-3x-3)$

$=x^3+(x^2+2x^2)+(2x-3x)-3$

$$
=x^3+3x^2-x-3
$$

Apply distributive property,

$$
(a+b)(c+d)=(a+b)(c)+(a+b)(d)
$$

Result
5 of 5
a) $6x^2-10x^3+8xy$

b) $6x^2+7x-20$

c) $x^2+8x+16$

d) $x^3+3x^2-x-3$

Exercise 2
Step 1
1 of 3
Let $x=1$ and simplify the expressions

$(3(1)+2)^2neq9(1)^2+4$

$5^2neq9+4$

$$
25neq13
$$

Part A
Step 2
2 of 3
$(3x+2)(3x+2)$

$3x(3x)+2(3x)+2(3x)+2(2)$

$9x^2+6x+6x+4$

$$
9x^2+12x+4
$$

Part B
Result
3 of 3
a) No! When $x=1$, left side is 25 while right side is 13.

b) $9x^2+12x+4$

Exercise 3
Step 1
1 of 3
Remember the distributive property: $(a+b)(c+d)=(a+b)(c)+(a+b)(d)$. Here, we shall solve it by multiplying from left to right and from right to left. We expect to get the same answer.

$$
begin{align*} bold{a);;;} (2x+4)(3x^2+6x-5)&=(2x+4)(3x^2)+(2x+4)(6x)+(2x+4)(-5)\\
&=[(2x)(3x^2)+4(3x^2)]+[(2x)(6x)+4(6x)]\\
&quad+[(2x)(-5)+4(-5)]\\
&=(6x^3+12x^2)+(12x^2+24x)+(-10x-20)\\
&=(6x^3)+(12x^2+12x^2)+(-10x+24x)-20\\
&=6x^3+24x^2+14x-20end{align*}
$$

Step 2
2 of 3
$$
begin{align*} bold{b);;;} (2x+4)(3x^2+6x-5)&=(2x)(3x^2+6x-5)+4(3x^2+6x-5)\\
&=[(2x)(3x^2)+(2x)(6x)+(2x)(-5)]\\
&quad+[4(3x^2)+4(6x)+4(-5)]\\
&=(6x^3+12x^2-10x)+(12x^2+24x-20)\\
&=(6x^3)+(12x^2+12x^2)+(-10x+24x)-20\\
&=6x^3+24x^2+14x-20\\
end{align*}
$$
Result
3 of 3
a) $6x^3+24x^2+14x-20$

b) same as (a)

Exercise 4
Step 1
1 of 7
a)

$$
begin{align*}
5x(5x^{2}+3x-4)&=25x^{3}+15x^{2}-20x tag{text{use distributive property}}\
end{align*}
$$

Step 2
2 of 7
b)

$$
begin{align*}
(x-6)(2x+5)&=2x^{2}+5x-12x-30 tag{text{use distributive property}}\
&=2x^{2}-7x-30 tag{text{simplify}}\
end{align*}
$$

Step 3
3 of 7
c)

$$
begin{align*}
(x+3)(x-3)+(5x-6)(3x-7)&=\
&=x^{2}-3x+3x-9+15x^{2}-35x-18x+42 tag{text{multiply binomials and remove parentheses}}\
&=x^{2}+15x^{2}-3x+3x-35x-18x-9+52 tag{text{combine like terms}}\
&=16x^{2}-53x+43\
end{align*}
$$

Step 4
4 of 7
d)

$$
begin{align*}
4(n-4)(3+n)-3(n-5)(n+8)&=\
&=4(3n+n^{2}-12-4n)-3(n^{2}+8n-5n-40) tag{text{multiply parehtheses}}\
&=4(n^{2}-n-12)-3(n^{2}+3n-40) tag{text{simplify expression in brackets }}\
&=4n^{2}-4n-48-3n^{2}-9n+120 tag{text{distributive property}}\
&=4n^{2}-3n^{2}-4n-9n-48+120 tag{text{combine like tems}}\
&=n^{2}-13n+72\
end{align*}
$$

Step 5
5 of 7
e)

$$
begin{align*}
3(2x-1)^{2}-5(4x+1)^{2}&=\
&=3((2x)^{2}-2cdot2xcdot1+1)-5((4x)^{2}+2cdot4xcdot1+1)\
&=3(4x^{2}-4x+1)-5(16x^{2}+8x+1)\
&=12x^{2}-12x+3-80x^{2}-40x-5\
&=-68x^{2}-52x-2\
end{align*}
$$

Step 6
6 of 7
d)

$$
begin{align*}
2(3a+4)(a-6)-(3-a)^{2}+4(5-a)&=\
&=2(3a^{2}-18a+4a-24)-(3^{2}-2cdot3cdot a+a^{2})+20-4a\
&=6a^{2}-36a+8a-48-9+6a-a^{2}+20-4a\
&=5a^{2}-26a-37\
end{align*}
$$

Result
7 of 7
a) $25x^3+15x^2-20x$

b) $2x^2-7x-30$

c) $16x^2-53x+33$

d) $n^2-3n+72$

e) $-68x^2-52x-2$

f) $5a^2-26a-37$

Exercise 5
Step 1
1 of 7
a) Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the given expression, $4x(x+5)(x-5)
,$ is equivalent

$$
begin{align*}
&
4x[(x)^2-(5)^2]
\&=
4x[x^2-25]
.end{align*}
$$

Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression
above is equivalent to

$$
begin{align*}
&
4x(x^2)+4x(-25)
\&=
4x^3-100x
.end{align*}
$$

Step 2
2 of 7
b) Using the square of a binomial which is given by $(a+b)^2=a^2+2ab+b^2$ or by $(a-b)^2=a^2-2ab+b^2,$ the given expression, $-2a(a+4)^2
,$ is equivalent to

$$
begin{align*}
&
-2a[(a)^2+2(a)(4)+(4)^2]
\&=
-2a[a^2+8a+16]
.end{align*}
$$

Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression,
above is equivalent to

$$
begin{align*}
&
-2a(a^2)-2a(8a)-2a(16)
\&=
-2a^3-16a^2-32a
.end{align*}
$$

Step 3
3 of 7
c) Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the given expression, $(x+2)(x-5)(x-2)
,$ is equivalent

$$
begin{align*}
&
[(x+2)(x-2)](x-5)
\&=
[(x)^2-(2)^2](x-5)
\&=
(x^2-4)(x-5)
.end{align*}
$$

Using the FOIL Method which is given by $(a+b)(c+d)=ac+ad+bc+bd,$ the expression above is equivalent to

$$
begin{align*}
&
x^2(x)+x^2(-5)-4(x)-4(-5)
\&=
x^3-5x^2-4x+20
.end{align*}
$$

Step 4
4 of 7
d) Using the FOIL Method which is given by $(a+b)(c+d)=ac+ad+bc+bd,$ the given expression, $(2x+1)(3x-5)(4-x)
,$ is equivalent to

$$
begin{align*}
&
[(2x+1)(3x-5)](4-x)
\&=
[2x(3x)+2x(-5)+1(3x)+1(-5)](4-x)
\&=
[6x^2-10x+3x-5](4-x)
\&=
(6x^2-7x-5)(4-x)
.end{align*}
$$

Using the Distributive Property, the expression above is equivalent to

$$
begin{align*}
&
6x^2(4)+6x^2(-x)-7x(4)-7x(-x)-5(4)-5(-x)
\&=
24x^2-6x^3-28x+7x^2-20+5x
\&=
-6x^3+(24x^2+7x^2)+(-28x+5x)-20
\&=
-6x^3+31x^2-23x-20
.end{align*}
$$

Step 5
5 of 7
e) Using the Cube of a Binomial which is given by $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ or $(a-b)^3=a^3-3a^2b+3ab^2-b^3,$ the given expression, $(9a-5)^3
,$ is equivalent to

$$
begin{align*}
&
(9a)^3-3(9a)^2(5)+3(9a)(5)^2-(5)^3
\&=
729a^3-1215a^2+675a-125
.end{align*}
$$

Step 6
6 of 7
f) By the Commutative Property of Addition, the given expression, $(a-b+c-d)(a+b-c-d)
,$ is equivalent to

$$
begin{align*}
&
(a-d-b+c)(a-d+b-c)
.end{align*}
$$

By regrouping, the expression above is equivalent to

$$
begin{align*}
[(a-d)-(b-c)][(a-d)+(b-c)]
.end{align*}
$$

Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the expression above is equivalent to

$$
begin{align*}
&
(a-d)^2-(b-c)^2
.end{align*}
$$

Using the square of a binomial which is given by $(a+b)^2=a^2+2ab+b^2$ or by $(a-b)^2=a^2-2ab+b^2,$ the expression above is equivalent to

$$
begin{align*}
&
(a^2-2ad+d^2)-(b^2-2bc+c^2)
\&=
a^2-2ad+d^2-b^2+2bc-c^2
\&=
a^2-b^2-c^2+d^2-2ad+2bc
.end{align*}
$$

Result
7 of 7
a) $4x^3-100x$

b) $-2a^3-16a^2-32a$

c) $x^3-5x^2-4x+20$

d) $-6x^3+31x^2-23x-20$

e) $729a^3-1215a^2+675a-125$

f) $a^2-b^2-c^2+d^2-2ad+2bc$

Exercise 6
Step 1
1 of 7
a) Using the Distributive Property, the given expression, $(3x-2)(2x-1)
,$ is equivalent to

$$
begin{align*}
&
3x(2x-1)-2(2x-1)
.end{align*}
$$

Hence, the given expressions are equivalent.

Step 2
2 of 7
b) Using the Distributive Property, the given expression, $(x-4)(2x^2+5x-6)
,$ is equivalent to

$$
begin{align*}
&
(2x^2+5x-6)(x-4)
\&=
2x^2(x-4)+5x(x-4)-6(x-4)
.end{align*}
$$

Hence, the given expressions are equivalent.

Step 3
3 of 7
c) The given expression, $(x+2)(3x-1)-(1-2x)^2
,$ is equivalent to

$$
begin{align*}
&
x(3x)+x(-1)+2(3x)+2(-1)-(1-2x)^2
\&=
3x^2-x+6x-2-(1-2x)^2
\&=
3x^2+5x-2-(1-2x)^2
\&=
3x^2+5x-2-[(1)^2-2(1)(2x)+(2x)^2]
\&=
3x^2+5x-2-[1-4x+4x^2]
\&=
3x^2+5x-2-1+4x-4x^2
\&=
(3x^2-4x^2)+(5x+4x)+(-2-1)
\&=
-x^2+9x-3
.end{align*}
$$

The expression above is NOT equivalent to the other given expression, $x^2+9x-3.$

Step 4
4 of 7
d) The given expression, $2(x-3)(2x^2-4x+5)
,$ is equivalent to

$$
begin{align*}
&
2[(x(2x^2)+x(-4x)+x(5)-3(2x^2)-3(-4x)-3(5)]
\&=
2[2x^3-4x^2+5x-6x^2+12x-15]
\&=
2[2x^3+(-4x^2-6x^2)+(5x+12x)-15]
\&=
2[2x^3-10x^2+17x-15]
\&=
2(2x^3)+2(-10x^2)+2(17x)+2(-15)
\&=
4x^3-20x^2+34x-30
.end{align*}
$$

This expression is equivalent to the other given expression.

Step 5
5 of 7
e) The given expression, $(4x+y-3)^2
,$ is equivalent to

$$
begin{align*}
&
(4x)^2+(y)^2+(-3)^2+2(4x)(y)+2(4x)(-3)+2(y)(-3)
\&=
16x^2+y^2+9+8xy-24x-6y
.end{align*}
$$

This expression is NOT equivalent to the other given expression, $16x^2-8xy+24x+y^2-6y+9.$

Step 6
6 of 7
f) The given expression, $3(y-2x)^3
,$ is equivalent to

$$
begin{align*}
&
3[(y)^3-3(y)^2(2x)+3(y)(2x)^2-(2x)^3]
\&=
3[y^3-3(y^2)(2x)+3(y)(4x^2)-(8x^3)]
\&=
3[y^3-6xy^2+12x^2y-8x^3]
\&=
3(y^3)+3(-6xy^2)+3(12x^2y)+3(-8x^3)
\&=
3y^3-18xy^2+36x^2y-24x^3
\&=
-24x^3+36x^2y-18xy^2+3y^3
.end{align*}
$$

This expression is equivalent to the other given expression.

Result
7 of 7
a) equivalent

b) equivalent

c) NOT equivalent

d) equivalent

e) NOT equivalent

f) equivalent

Exercise 7
Step 1
1 of 2
If both sides of the equation is identical after simplification, then it is true for all real numbers. In this case, apply distributive property: $(a+b)(c+d)=(a+b)(c)+(a+b)(d)$

$$
begin{align*} (x-1)(x^4+x^3+x^2+x+1) &= (x-1)(x^4)+(x-1)(x^3)+(x-1)(x^2)\
&quad+(x-1)(x)+(x-1)\
&=(x^5-x^4)+(x^4-x^3)+(x^3-x^2)\
&quad+(x^2-x)+(x-1)\
&=x^5+(-x^4+x^4)+(-x^3+x^3)\
&quad+(-x^2+x^2)+(-x+x)-1\
&=x^5-1\
end{align*}
$$

Therefore, the equation $(x-1)(x^4+x^3+x^2+x+1) =x^5-1$ is true for all real numbers since the left side and right side expressions are equivalent.

Result
2 of 2
True for all real numbers since the left side and right side expressions are equivalent
Exercise 8
Step 1
1 of 2
a) Using $(ab)c$, the given expression, $19(5x+7)(3x-2)
,$ is equivalent to

$$
begin{align*}
&
[19(5x+7)](3x-2)
\&=
[95x+133](3x-2)
\&=
95x(3x)+95x(-2)+133(3x)+133(-2)
\&=
285x^2-190x+399x-266
\&=
285x^2+209-266
.end{align*}
$$

Using $a(bc)$, the given expression, $19(5x+7)(3x-2)
,$ is equivalent to

$$
begin{align*}
&
19[(5x+7)(3x-2)]
\&=
19[5x(3x)+5x(-2)+7(3x)+7(-2)]
\&=
19[15x^2-10x+21x-14]
\&=
19[15x^2+11x-14]
\&=
19(15x^2)+19(11x)+19(-14)
\&=
285x^2+209x-266
.end{align*}
$$

Both solutions above ended with the same answer. This verifies the Associative Property of Multiplication.

b) The second method is easier since its solution involves manipulating smaller numbers.

Result
2 of 2
a) Both methods lead to $285x^2+209x-266$

b) The second method is easier as it involves smaller numbers.

Exercise 9
Step 1
1 of 3
a) Using $SA=2pi r^2+2pi rh
,$ with a radius of $(2x+1)$ and a height of $2x-1,$ then

$$
begin{align*}
SA&=2pi (2x+1)^2+2pi (2x+1)(2x-1)
\
SA&=2pi (2x+1)[(2x+1)+(2x-1)]
&text{ (factor the $GCF$)}
\
SA&=2pi (2x+1)(2x+1+2x-1)
\
SA&=2pi (2x+1)(4x)
\
SA&=8pi x(2x+1)
\
SA&=16pi x^2+8pi x
.end{align*}
$$

Step 2
2 of 3
b) Using $V=pi r^2h
,$ with a radius of $(2x+1)$ and a height of $(2x-1),$ then

$$
begin{align*}
V&=pi (2x+1)^2(2x-1)
\
V&=pi [(2x)^2+2(2x)(1)+(1)^2](2x-1)
\
V&=pi (4x^2+4x+1)(2x-1)
\
V&=pi [4x^2(2x)+4x^2(-1)+4x(2x)+4x(-1)+1(2x)+1(-1)]
\
V&=pi [8x^3-4x^2+8x^2-4x+2x-1)
\
V&=pi [8x^3+4x^2-2x-1)
\
V&=8x^3pi+4x^2pi-2xpi-pi
.end{align*}
$$

Result
3 of 3
a) $SA=16pi x^2+8pi x$

b) $V=8x^3pi+4x^2pi-2xpi-pi$

Exercise 10
Step 1
1 of 3
a) Using the square of a binomial which is given by $(a+b)^2=a^2+2ab+b^2$ or by $(a-b)^2=a^2-2ab+b^2,$ then

$$
begin{align*}
(x-3)^2&Rightarrow(x)^2-2(x)(3)+(3)^2
\&=
x^2-6x+9
\\&text{and}\\
(3-x)^2&Rightarrow
(3)^2-2(3)(x)+(x)^2
\&=
9-6x+x^2
.end{align*}
$$

Hence, $(x-3)^2$ and $(3-x)^2$ are equivalent.

Step 2
2 of 3
b) Using the cube of a binomial which is given by $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ or $(a-b)^3=a^3-3a^2b+3ab^2-b^3,$ then

$$
begin{align*}
(x-3)^3&Rightarrow
x^3-3(x)^2(3)+3(x)(3)^2-(3)^3
\&=
x^3-3(x^2)(3)+3(x)(9)-(27)
\&=
x^3-9x^2+27x-27
\\&text{and}\\
(3-x)^3&Rightarrow
(3)^3-3(3)^2(x)+3(3)(x)^2-(x)^3
\&=
(27)-3(9)(x)+3(3)(x^2)-(x^3)
\&=
27-27x+9x^2-x^3
.end{align*}
$$

Hence, $(x-3)^3$ and $(3-x)^3$ are NOT equivalent.

Result
3 of 3
a) YES

b) NO

Exercise 11
Step 1
1 of 5
a) Using the square of a multinomial which is given by $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2b
,$ the given expression, $(x^2+2x-1)^2
,$ is equivalent to

$$
begin{align*}
&
(x)^2+(2x)^2+(-1)^2+2(x^2)(2x)+2(x^2)(-1)+2(2x)(-1)
\&=
x^2+4x^2+1+4x^3-2x^2-4x
.end{align*}
$$

Step 2
2 of 5
b) Using the cube of a binomial which is given by

$$
begin{align*}
(a+b)^3&=a^3+3a^2b+3ab^2+b^3
\&text{or}\
(a-b)^3&=a^3-3a^2b+3ab^2-b^3
,end{align*}
$$
the given expression, $(2-a)^3
,$ is equivalent to

$$
begin{align*}
&
(2)^3-3(2)^2(a)+3(2)(a)^2-(a)^3
\&=
(8)-3(4)(a)+3(2)(a^2)-(a^3)
\&=
8-12a+6a^2-a^3
.end{align*}
$$

Step 3
3 of 5
c) Grouping the terms, the given expression, $(x^3+x^2+x+1)(x^3-x^2-x-1)
,$ is equivalent to

$$
begin{align*}
&
[x^3+(x^2+x+1)][x^3-(x^2+x+1)]
.end{align*}
$$

Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the expression above is equivalent to

$$
begin{align*}
&
(x^3)^2-(x^2+x+1)^2
\&=
x^6-(x^2+x+1)^2
.end{align*}
$$

Using the square of a multinomial which is given by $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2b
,$ the expression above is equivalent to

$$
begin{align*}
&
x^6-[(x^2)^2+(x)^2+(1)^2+2(x^2)(x)+2(x^2)(1)+2(x)(1)]
\&=
x^6-[x^4+x^2+1+2x^3+2x^2+2x]
\&=
x^6-[x^4+2x^3+(x^2+2x^2)+2x+1]
\&=
x^6-[x^4+2x^3+3x^2+2x+1]
\&=
x^6-x^4-2x^3-3x^2-2x-1
.end{align*}
$$

Step 4
4 of 5
d) Using the square of a binomial which is given by $(a+b)^2=a^2+2ab+b^2$ or by $(a-b)^2=a^2-2ab+b^2,$ the given expression, $2(x+1)^2-3(2x-1)(3x-5)
,$ is equivalent to

$$
begin{align*}
&
2[(x)^2+2(x)(1)+(1)^2]-3(2x-1)(3x-5)
\&=
2[x^2+2x+1]-3(2x-1)(3x-5)
.end{align*}
$$

Using the FOIL Method which is given by $(a+b)(c+d)=ac+ad+bc+bd,$ the expression above is equivalent to

$$
begin{align*}
&
2[x^2+2x+1]-3[2x(3x)+2x(-5)-1(3x)-1(-5)]
\&=
2[x^2+2x+1]-3[6x^2-10x-3x+5]
\&=
2[x^2+2x+1]-3[6x^2-13x+5]
.end{align*}
$$

Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression,
above is equivalent to

$$
begin{align*}
&
2x^2+4x+2-18x^2+39x-15
\&=
(2x^2-18x^2)+(4x+39x)+(2-15)
\&=
-16x^2+43x-13
.end{align*}
$$

Result
5 of 5
a) $x^2+4x^2+1+4x^3-2x^2-4x$

b) $8-12a+6a^2-a^3$

c) $x^6-x^4-2x^3-3x^2-2x-1$

d) $-16x^2+43x-13$

Exercise 12
Step 1
1 of 2
For a right triangle with legs $x$ and $y$, the area $A$ is given by

$$
begin{equation*}A=frac{1}{2}xyend{equation*}
$$

If one side is doubled and the other side is halved, the equation becomes

$$
begin{equation*} A_2=frac{1}{2}(2x)left(dfrac{y}{2}right)=dfrac{1}{2}xy end{equation*}
$$

which is identical to the original equation. The change in area $(A-A_2)$ is

$$
begin{equation*} A-A_2 = dfrac{1}{2}xy-dfrac{1}{2}xy=0end{equation*}
$$

This means there will be no change in area if the one side is doubled and the other side is halved.

Result
2 of 2
$0$ , that is, no change in area
Exercise 13
Step 1
1 of 2
The kinetic energy of the object is given by

$E=dfrac{1}{2}mv^2$

$bold{a);;;}$ if mass is increased by $x$, replace $m$ by $(m+x)$

$E=dfrac{1}{2}(m+x)(v^2)$

$E=dfrac{1}{2}mv^2+dfrac{1}{2}xv^2$

$bold{b);;;}$ if speed is increased by $y$, replace $v$ with $(v+y)$

$E=dfrac{1}{2}m(v+y)^2$

$E=dfrac{1}{2}m(v^2+2vy+y^2)$

$$
E=dfrac{1}{2}mv^2+mvy+dfrac{1}{2}my^2
$$

Result
2 of 2
a) $E=dfrac{1}{2}mv^2+dfrac{1}{2}xv^2$

b) $E=dfrac{1}{2}mv^2+mvy+dfrac{1}{2}my^2$

Exercise 14
Step 1
1 of 3
$bold{a);;;}$ Investigate by observing the number of terms for different cases for $f(x)$ and $g(x)$:

(i) $f(x)$ has 2 terms and $g(x)$ has 1 term:

Example: $(a+b)(c)=ab+acimplies 2$ terms

(ii) If $f(x)$ has 2 terms and $g(x)$ has 2 terms

Example: $(a+b)(c+d)=ac+ad+bc+bdimplies$ 4 terms

(iii) $f(x)$ has 3 terms and $g(x)$ has 2 terms

Example: $(a+b+c)(d+e)=a(d+e)+b(d+e)+c(d+e)=ad+ae+bd+be+cd+ceimplies 6$ terms

It appears that if $f(x)$ has $n$ terms and $g(x)$ has $m$ terms, then the product contains $ntimes m$ terms

Step 2
2 of 3
$bold{b);;;}$ If we have more than 2 factors. For example, if we have 3 factors with 2 terms each, if the pattern is still valid, we would expect that the number of terms would be $2times 2 times 2=8$

$$
begin{align*} (a+b)(c+d)(e+f)&=[(a+b)(c+d)](e+f)\
&=(ac+ad+bc+bd)(e+f)\
&=ac(e+f)+ad(e+f)+bc(e+f)+bd(e+f)\
&=ace+acf+ade+adf+bce+bcf+bde+bdf\
end{align*}
$$

Indeed, we have 8 terms. You could investigate further examples and it would show that the number of terms in the product of polynomials (without combining like terms) is equal to the product of the number of terms in each polynomial.

Result
3 of 3
a) $f(x)$ has 2 terms and $g(x)$ has 3 terms

$(a+b+c)(d+e)=ad+ae+bd+be+cd+ceimplies 2times 3= 6$ terms

b) The number of terms in the product of polynomials (without combining like terms) is equal to the product of the number of terms in each polynomial.

Exercise 15
Step 1
1 of 5
a.i) The cubes that will have $3$ faces that are colored red are the cubes at the corner. There are a total of $8$ cubes at the corners.

a.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $12$ such cubes.

a.iii) The cubes that will have $1$ face that is colored red are the middle cubes. There are $6$ such cubes.

a.iv) There is 1 cube (innermost) with an uncolored phase.

Step 2
2 of 5
b.i) The cubes that will have $3$ faces that are colored red are the cubes at the corner. There are a total of $8$ cubes at the corners.

b.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $96$ such cubes.

b.iii) The cubes that will have $1$ face that is colored red are the inner cubes that are at the surface of each phases of the cube. There are $384$ such cubes.

b.iv) The inside cubes are not colored. There are $512$ such cubes.

Step 3
3 of 5
c.i) The cubes that will have $3$ faces that are colored red are the cubes at the corner. There are a total of $8$ cubes at the corners.

c.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $12(n-2)$ such cubes.

c.iii) The cubes that will have $1$ face that is colored red are the inner cubes that are at the surface of each phases of the cube. There are $6(n-2)^2$ such cubes.

c.iv) The inside cubes are not colored. There are $(n-2)^3$ such cubes.

Step 4
4 of 5
d.i) There are a total of $8$ that will have $3$ phases that are colored red. If $n=3$ or $n=10,$ this, remains constant.

d.ii) There are a total of $12(n-2)$ cubes that have $2$ faces that are colored red.

$$
begin{align*}
text{If $n=3:$ }&
12(3-2)
\&=
12(1)
\&=
12
\\text{If $n=10:$ }&
12(10-2)
\&=
12(8)
\&=
96
.end{align*}
$$

d.iii) There are $6(n-2)^2$ cubes that will have $1$ face that is colored red.

$$
begin{align*}
text{If $n=3:$ }&
6(3-2)^2
\&=
6(1)^2
\&=
6(1)
\&=
6
\\text{If $n=10:$ }&
6(10-2)^2
\&=
6(8)^2
\&=
6(64)
\&=
384
.end{align*}
$$

d.iv) There are $(n-2)^3$ inside cubes which are not colored.

$$
begin{align*}
text{If $n=3:$ }&
(3-2)^3
\&=
(1)^3
\&=
1
\\text{If $n=10:$ }&
(10-2)^3
\&=
(8)^3
\&=
512
.end{align*}
$$

Result
5 of 5
$$
begin{align*}
&text{a.i) } 8 && text{a.ii) } 12 && text{a.iii) } 6 && text{a.iv) } 1
\&text{b.i) } 8 && text{b.ii) } 96 && text{b.iii) } 384 && text{b.iv) } 512
\&text{c.i) } 8 && text{c.ii) } 12(n-2) && text{c.iii) } 6(n-2)^2 && text{c.iv) } (n-2)^3
\&text{d) see verification}
.end{align*}
$$
Exercise 16
Step 1
1 of 3
a) Let the two digit number be $45.$ Then

Step i) $4$

Step ii) $4+4^2$ equal to $20$

Step iii) $2025$

Hence, $45^2$ is equal to $2025.$

Step 2
2 of 3
b) Let $a$ be the tens digit of a two-digit number ending in $5.$ Then

Step i) $a$

Step ii) $a+a^2$

Step iii) $100(a+a^2)+25$

The method above works all the time because the two-digit number ending in $5$, $underline{a}text{ }underline{5},$ is equal to $10a+5.$ When this number is squared, then

$$
begin{align*}
&
(10a+5)^2
\&=
(10a)^2+2(10a)(5)+5^2
\&=
100a^2+100a+25
\&=
100(a^2+a)+25
\&=
100(a+a^2)+25
.end{align*}
$$

The expression above is equivalent to Step iii.

Result
3 of 3
a) see simulation-example

b) see algebraic proof

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review