All Solutions
Section 2-2: Multiplying Polynomials
$=2x(3x)+2x(-5x^2)+2x(4y)$
$$
= 6x-10x^3+8xy
$$
$a(b+c)=ab+ac$
$=(3x-4)(2x)+(3x-4)(5)$
$=[(3x)(2x)-4(2x)]+[(3x)(5)-4(5)]$
$=(6x^2-8x)+(15x-20)$
$=6x^2+7x-20$
$$
(a+b)(c+d)=(a+b)(c)+(a+b)(d)
$$
$=(x)^2+2(x)(4)+(4)^2$
$=x^2+8x+16$
$(a+b)^2=a^2+2ab+b^2$
$=(x+1)(x^2)+(x+1)(2x)+(x+1)(-3)$
$=(x^3+x^2)+(2x^2+2x)+(-3x-3)$
$=x^3+(x^2+2x^2)+(2x-3x)-3$
$$
=x^3+3x^2-x-3
$$
$$
(a+b)(c+d)=(a+b)(c)+(a+b)(d)
$$
b) $6x^2+7x-20$
c) $x^2+8x+16$
d) $x^3+3x^2-x-3$
$(3(1)+2)^2neq9(1)^2+4$
$5^2neq9+4$
$$
25neq13
$$
$3x(3x)+2(3x)+2(3x)+2(2)$
$9x^2+6x+6x+4$
$$
9x^2+12x+4
$$
b) $9x^2+12x+4$
$$
begin{align*} bold{a);;;} (2x+4)(3x^2+6x-5)&=(2x+4)(3x^2)+(2x+4)(6x)+(2x+4)(-5)\\
&=[(2x)(3x^2)+4(3x^2)]+[(2x)(6x)+4(6x)]\\
&quad+[(2x)(-5)+4(-5)]\\
&=(6x^3+12x^2)+(12x^2+24x)+(-10x-20)\\
&=(6x^3)+(12x^2+12x^2)+(-10x+24x)-20\\
&=6x^3+24x^2+14x-20end{align*}
$$
begin{align*} bold{b);;;} (2x+4)(3x^2+6x-5)&=(2x)(3x^2+6x-5)+4(3x^2+6x-5)\\
&=[(2x)(3x^2)+(2x)(6x)+(2x)(-5)]\\
&quad+[4(3x^2)+4(6x)+4(-5)]\\
&=(6x^3+12x^2-10x)+(12x^2+24x-20)\\
&=(6x^3)+(12x^2+12x^2)+(-10x+24x)-20\\
&=6x^3+24x^2+14x-20\\
end{align*}
$$
b) same as (a)
$$
begin{align*}
5x(5x^{2}+3x-4)&=25x^{3}+15x^{2}-20x tag{text{use distributive property}}\
end{align*}
$$
$$
begin{align*}
(x-6)(2x+5)&=2x^{2}+5x-12x-30 tag{text{use distributive property}}\
&=2x^{2}-7x-30 tag{text{simplify}}\
end{align*}
$$
$$
begin{align*}
(x+3)(x-3)+(5x-6)(3x-7)&=\
&=x^{2}-3x+3x-9+15x^{2}-35x-18x+42 tag{text{multiply binomials and remove parentheses}}\
&=x^{2}+15x^{2}-3x+3x-35x-18x-9+52 tag{text{combine like terms}}\
&=16x^{2}-53x+43\
end{align*}
$$
$$
begin{align*}
4(n-4)(3+n)-3(n-5)(n+8)&=\
&=4(3n+n^{2}-12-4n)-3(n^{2}+8n-5n-40) tag{text{multiply parehtheses}}\
&=4(n^{2}-n-12)-3(n^{2}+3n-40) tag{text{simplify expression in brackets }}\
&=4n^{2}-4n-48-3n^{2}-9n+120 tag{text{distributive property}}\
&=4n^{2}-3n^{2}-4n-9n-48+120 tag{text{combine like tems}}\
&=n^{2}-13n+72\
end{align*}
$$
$$
begin{align*}
3(2x-1)^{2}-5(4x+1)^{2}&=\
&=3((2x)^{2}-2cdot2xcdot1+1)-5((4x)^{2}+2cdot4xcdot1+1)\
&=3(4x^{2}-4x+1)-5(16x^{2}+8x+1)\
&=12x^{2}-12x+3-80x^{2}-40x-5\
&=-68x^{2}-52x-2\
end{align*}
$$
$$
begin{align*}
2(3a+4)(a-6)-(3-a)^{2}+4(5-a)&=\
&=2(3a^{2}-18a+4a-24)-(3^{2}-2cdot3cdot a+a^{2})+20-4a\
&=6a^{2}-36a+8a-48-9+6a-a^{2}+20-4a\
&=5a^{2}-26a-37\
end{align*}
$$
b) $2x^2-7x-30$
c) $16x^2-53x+33$
d) $n^2-3n+72$
e) $-68x^2-52x-2$
f) $5a^2-26a-37$
,$ is equivalent
$$
begin{align*}
&
4x[(x)^2-(5)^2]
\&=
4x[x^2-25]
.end{align*}
$$
Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression
above is equivalent to
$$
begin{align*}
&
4x(x^2)+4x(-25)
\&=
4x^3-100x
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
-2a[(a)^2+2(a)(4)+(4)^2]
\&=
-2a[a^2+8a+16]
.end{align*}
$$
Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression,
above is equivalent to
$$
begin{align*}
&
-2a(a^2)-2a(8a)-2a(16)
\&=
-2a^3-16a^2-32a
.end{align*}
$$
,$ is equivalent
$$
begin{align*}
&
[(x+2)(x-2)](x-5)
\&=
[(x)^2-(2)^2](x-5)
\&=
(x^2-4)(x-5)
.end{align*}
$$
Using the FOIL Method which is given by $(a+b)(c+d)=ac+ad+bc+bd,$ the expression above is equivalent to
$$
begin{align*}
&
x^2(x)+x^2(-5)-4(x)-4(-5)
\&=
x^3-5x^2-4x+20
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
[(2x+1)(3x-5)](4-x)
\&=
[2x(3x)+2x(-5)+1(3x)+1(-5)](4-x)
\&=
[6x^2-10x+3x-5](4-x)
\&=
(6x^2-7x-5)(4-x)
.end{align*}
$$
Using the Distributive Property, the expression above is equivalent to
$$
begin{align*}
&
6x^2(4)+6x^2(-x)-7x(4)-7x(-x)-5(4)-5(-x)
\&=
24x^2-6x^3-28x+7x^2-20+5x
\&=
-6x^3+(24x^2+7x^2)+(-28x+5x)-20
\&=
-6x^3+31x^2-23x-20
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
(9a)^3-3(9a)^2(5)+3(9a)(5)^2-(5)^3
\&=
729a^3-1215a^2+675a-125
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
(a-d-b+c)(a-d+b-c)
.end{align*}
$$
By regrouping, the expression above is equivalent to
$$
begin{align*}
[(a-d)-(b-c)][(a-d)+(b-c)]
.end{align*}
$$
Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the expression above is equivalent to
$$
begin{align*}
&
(a-d)^2-(b-c)^2
.end{align*}
$$
Using the square of a binomial which is given by $(a+b)^2=a^2+2ab+b^2$ or by $(a-b)^2=a^2-2ab+b^2,$ the expression above is equivalent to
$$
begin{align*}
&
(a^2-2ad+d^2)-(b^2-2bc+c^2)
\&=
a^2-2ad+d^2-b^2+2bc-c^2
\&=
a^2-b^2-c^2+d^2-2ad+2bc
.end{align*}
$$
b) $-2a^3-16a^2-32a$
c) $x^3-5x^2-4x+20$
d) $-6x^3+31x^2-23x-20$
e) $729a^3-1215a^2+675a-125$
f) $a^2-b^2-c^2+d^2-2ad+2bc$
,$ is equivalent to
$$
begin{align*}
&
3x(2x-1)-2(2x-1)
.end{align*}
$$
Hence, the given expressions are equivalent.
,$ is equivalent to
$$
begin{align*}
&
(2x^2+5x-6)(x-4)
\&=
2x^2(x-4)+5x(x-4)-6(x-4)
.end{align*}
$$
Hence, the given expressions are equivalent.
,$ is equivalent to
$$
begin{align*}
&
x(3x)+x(-1)+2(3x)+2(-1)-(1-2x)^2
\&=
3x^2-x+6x-2-(1-2x)^2
\&=
3x^2+5x-2-(1-2x)^2
\&=
3x^2+5x-2-[(1)^2-2(1)(2x)+(2x)^2]
\&=
3x^2+5x-2-[1-4x+4x^2]
\&=
3x^2+5x-2-1+4x-4x^2
\&=
(3x^2-4x^2)+(5x+4x)+(-2-1)
\&=
-x^2+9x-3
.end{align*}
$$
The expression above is NOT equivalent to the other given expression, $x^2+9x-3.$
,$ is equivalent to
$$
begin{align*}
&
2[(x(2x^2)+x(-4x)+x(5)-3(2x^2)-3(-4x)-3(5)]
\&=
2[2x^3-4x^2+5x-6x^2+12x-15]
\&=
2[2x^3+(-4x^2-6x^2)+(5x+12x)-15]
\&=
2[2x^3-10x^2+17x-15]
\&=
2(2x^3)+2(-10x^2)+2(17x)+2(-15)
\&=
4x^3-20x^2+34x-30
.end{align*}
$$
This expression is equivalent to the other given expression.
,$ is equivalent to
$$
begin{align*}
&
(4x)^2+(y)^2+(-3)^2+2(4x)(y)+2(4x)(-3)+2(y)(-3)
\&=
16x^2+y^2+9+8xy-24x-6y
.end{align*}
$$
This expression is NOT equivalent to the other given expression, $16x^2-8xy+24x+y^2-6y+9.$
,$ is equivalent to
$$
begin{align*}
&
3[(y)^3-3(y)^2(2x)+3(y)(2x)^2-(2x)^3]
\&=
3[y^3-3(y^2)(2x)+3(y)(4x^2)-(8x^3)]
\&=
3[y^3-6xy^2+12x^2y-8x^3]
\&=
3(y^3)+3(-6xy^2)+3(12x^2y)+3(-8x^3)
\&=
3y^3-18xy^2+36x^2y-24x^3
\&=
-24x^3+36x^2y-18xy^2+3y^3
.end{align*}
$$
This expression is equivalent to the other given expression.
b) equivalent
c) NOT equivalent
d) equivalent
e) NOT equivalent
f) equivalent
$$
begin{align*} (x-1)(x^4+x^3+x^2+x+1) &= (x-1)(x^4)+(x-1)(x^3)+(x-1)(x^2)\
&quad+(x-1)(x)+(x-1)\
&=(x^5-x^4)+(x^4-x^3)+(x^3-x^2)\
&quad+(x^2-x)+(x-1)\
&=x^5+(-x^4+x^4)+(-x^3+x^3)\
&quad+(-x^2+x^2)+(-x+x)-1\
&=x^5-1\
end{align*}
$$
Therefore, the equation $(x-1)(x^4+x^3+x^2+x+1) =x^5-1$ is true for all real numbers since the left side and right side expressions are equivalent.
,$ is equivalent to
$$
begin{align*}
&
[19(5x+7)](3x-2)
\&=
[95x+133](3x-2)
\&=
95x(3x)+95x(-2)+133(3x)+133(-2)
\&=
285x^2-190x+399x-266
\&=
285x^2+209-266
.end{align*}
$$
Using $a(bc)$, the given expression, $19(5x+7)(3x-2)
,$ is equivalent to
$$
begin{align*}
&
19[(5x+7)(3x-2)]
\&=
19[5x(3x)+5x(-2)+7(3x)+7(-2)]
\&=
19[15x^2-10x+21x-14]
\&=
19[15x^2+11x-14]
\&=
19(15x^2)+19(11x)+19(-14)
\&=
285x^2+209x-266
.end{align*}
$$
Both solutions above ended with the same answer. This verifies the Associative Property of Multiplication.
b) The second method is easier since its solution involves manipulating smaller numbers.
b) The second method is easier as it involves smaller numbers.
,$ with a radius of $(2x+1)$ and a height of $2x-1,$ then
$$
begin{align*}
SA&=2pi (2x+1)^2+2pi (2x+1)(2x-1)
\
SA&=2pi (2x+1)[(2x+1)+(2x-1)]
&text{ (factor the $GCF$)}
\
SA&=2pi (2x+1)(2x+1+2x-1)
\
SA&=2pi (2x+1)(4x)
\
SA&=8pi x(2x+1)
\
SA&=16pi x^2+8pi x
.end{align*}
$$
,$ with a radius of $(2x+1)$ and a height of $(2x-1),$ then
$$
begin{align*}
V&=pi (2x+1)^2(2x-1)
\
V&=pi [(2x)^2+2(2x)(1)+(1)^2](2x-1)
\
V&=pi (4x^2+4x+1)(2x-1)
\
V&=pi [4x^2(2x)+4x^2(-1)+4x(2x)+4x(-1)+1(2x)+1(-1)]
\
V&=pi [8x^3-4x^2+8x^2-4x+2x-1)
\
V&=pi [8x^3+4x^2-2x-1)
\
V&=8x^3pi+4x^2pi-2xpi-pi
.end{align*}
$$
b) $V=8x^3pi+4x^2pi-2xpi-pi$
$$
begin{align*}
(x-3)^2&Rightarrow(x)^2-2(x)(3)+(3)^2
\&=
x^2-6x+9
\\&text{and}\\
(3-x)^2&Rightarrow
(3)^2-2(3)(x)+(x)^2
\&=
9-6x+x^2
.end{align*}
$$
Hence, $(x-3)^2$ and $(3-x)^2$ are equivalent.
$$
begin{align*}
(x-3)^3&Rightarrow
x^3-3(x)^2(3)+3(x)(3)^2-(3)^3
\&=
x^3-3(x^2)(3)+3(x)(9)-(27)
\&=
x^3-9x^2+27x-27
\\&text{and}\\
(3-x)^3&Rightarrow
(3)^3-3(3)^2(x)+3(3)(x)^2-(x)^3
\&=
(27)-3(9)(x)+3(3)(x^2)-(x^3)
\&=
27-27x+9x^2-x^3
.end{align*}
$$
Hence, $(x-3)^3$ and $(3-x)^3$ are NOT equivalent.
b) NO
,$ the given expression, $(x^2+2x-1)^2
,$ is equivalent to
$$
begin{align*}
&
(x)^2+(2x)^2+(-1)^2+2(x^2)(2x)+2(x^2)(-1)+2(2x)(-1)
\&=
x^2+4x^2+1+4x^3-2x^2-4x
.end{align*}
$$
$$
begin{align*}
(a+b)^3&=a^3+3a^2b+3ab^2+b^3
\&text{or}\
(a-b)^3&=a^3-3a^2b+3ab^2-b^3
,end{align*}
$$
the given expression, $(2-a)^3
,$ is equivalent to
$$
begin{align*}
&
(2)^3-3(2)^2(a)+3(2)(a)^2-(a)^3
\&=
(8)-3(4)(a)+3(2)(a^2)-(a^3)
\&=
8-12a+6a^2-a^3
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
[x^3+(x^2+x+1)][x^3-(x^2+x+1)]
.end{align*}
$$
Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the expression above is equivalent to
$$
begin{align*}
&
(x^3)^2-(x^2+x+1)^2
\&=
x^6-(x^2+x+1)^2
.end{align*}
$$
Using the square of a multinomial which is given by $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2b
,$ the expression above is equivalent to
$$
begin{align*}
&
x^6-[(x^2)^2+(x)^2+(1)^2+2(x^2)(x)+2(x^2)(1)+2(x)(1)]
\&=
x^6-[x^4+x^2+1+2x^3+2x^2+2x]
\&=
x^6-[x^4+2x^3+(x^2+2x^2)+2x+1]
\&=
x^6-[x^4+2x^3+3x^2+2x+1]
\&=
x^6-x^4-2x^3-3x^2-2x-1
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
2[(x)^2+2(x)(1)+(1)^2]-3(2x-1)(3x-5)
\&=
2[x^2+2x+1]-3(2x-1)(3x-5)
.end{align*}
$$
Using the FOIL Method which is given by $(a+b)(c+d)=ac+ad+bc+bd,$ the expression above is equivalent to
$$
begin{align*}
&
2[x^2+2x+1]-3[2x(3x)+2x(-5)-1(3x)-1(-5)]
\&=
2[x^2+2x+1]-3[6x^2-10x-3x+5]
\&=
2[x^2+2x+1]-3[6x^2-13x+5]
.end{align*}
$$
Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the
expression,
above is equivalent to
$$
begin{align*}
&
2x^2+4x+2-18x^2+39x-15
\&=
(2x^2-18x^2)+(4x+39x)+(2-15)
\&=
-16x^2+43x-13
.end{align*}
$$
b) $8-12a+6a^2-a^3$
c) $x^6-x^4-2x^3-3x^2-2x-1$
d) $-16x^2+43x-13$
$$
begin{equation*}A=frac{1}{2}xyend{equation*}
$$
If one side is doubled and the other side is halved, the equation becomes
$$
begin{equation*} A_2=frac{1}{2}(2x)left(dfrac{y}{2}right)=dfrac{1}{2}xy end{equation*}
$$
which is identical to the original equation. The change in area $(A-A_2)$ is
$$
begin{equation*} A-A_2 = dfrac{1}{2}xy-dfrac{1}{2}xy=0end{equation*}
$$
This means there will be no change in area if the one side is doubled and the other side is halved.
$E=dfrac{1}{2}mv^2$
$bold{a);;;}$ if mass is increased by $x$, replace $m$ by $(m+x)$
$E=dfrac{1}{2}(m+x)(v^2)$
$E=dfrac{1}{2}mv^2+dfrac{1}{2}xv^2$
$bold{b);;;}$ if speed is increased by $y$, replace $v$ with $(v+y)$
$E=dfrac{1}{2}m(v+y)^2$
$E=dfrac{1}{2}m(v^2+2vy+y^2)$
$$
E=dfrac{1}{2}mv^2+mvy+dfrac{1}{2}my^2
$$
b) $E=dfrac{1}{2}mv^2+mvy+dfrac{1}{2}my^2$
(i) $f(x)$ has 2 terms and $g(x)$ has 1 term:
Example: $(a+b)(c)=ab+acimplies 2$ terms
(ii) If $f(x)$ has 2 terms and $g(x)$ has 2 terms
Example: $(a+b)(c+d)=ac+ad+bc+bdimplies$ 4 terms
(iii) $f(x)$ has 3 terms and $g(x)$ has 2 terms
Example: $(a+b+c)(d+e)=a(d+e)+b(d+e)+c(d+e)=ad+ae+bd+be+cd+ceimplies 6$ terms
It appears that if $f(x)$ has $n$ terms and $g(x)$ has $m$ terms, then the product contains $ntimes m$ terms
$$
begin{align*} (a+b)(c+d)(e+f)&=[(a+b)(c+d)](e+f)\
&=(ac+ad+bc+bd)(e+f)\
&=ac(e+f)+ad(e+f)+bc(e+f)+bd(e+f)\
&=ace+acf+ade+adf+bce+bcf+bde+bdf\
end{align*}
$$
Indeed, we have 8 terms. You could investigate further examples and it would show that the number of terms in the product of polynomials (without combining like terms) is equal to the product of the number of terms in each polynomial.
$(a+b+c)(d+e)=ad+ae+bd+be+cd+ceimplies 2times 3= 6$ terms
b) The number of terms in the product of polynomials (without combining like terms) is equal to the product of the number of terms in each polynomial.
a.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $12$ such cubes.
a.iii) The cubes that will have $1$ face that is colored red are the middle cubes. There are $6$ such cubes.
a.iv) There is 1 cube (innermost) with an uncolored phase.
b.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $96$ such cubes.
b.iii) The cubes that will have $1$ face that is colored red are the inner cubes that are at the surface of each phases of the cube. There are $384$ such cubes.
b.iv) The inside cubes are not colored. There are $512$ such cubes.
c.ii) The cubes that will have $2$ faces that are colored red are the ones at the perimeter of the cube (except the corner cubes). There are a total of $12(n-2)$ such cubes.
c.iii) The cubes that will have $1$ face that is colored red are the inner cubes that are at the surface of each phases of the cube. There are $6(n-2)^2$ such cubes.
c.iv) The inside cubes are not colored. There are $(n-2)^3$ such cubes.
d.ii) There are a total of $12(n-2)$ cubes that have $2$ faces that are colored red.
$$
begin{align*}
text{If $n=3:$ }&
12(3-2)
\&=
12(1)
\&=
12
\\text{If $n=10:$ }&
12(10-2)
\&=
12(8)
\&=
96
.end{align*}
$$
d.iii) There are $6(n-2)^2$ cubes that will have $1$ face that is colored red.
$$
begin{align*}
text{If $n=3:$ }&
6(3-2)^2
\&=
6(1)^2
\&=
6(1)
\&=
6
\\text{If $n=10:$ }&
6(10-2)^2
\&=
6(8)^2
\&=
6(64)
\&=
384
.end{align*}
$$
d.iv) There are $(n-2)^3$ inside cubes which are not colored.
$$
begin{align*}
text{If $n=3:$ }&
(3-2)^3
\&=
(1)^3
\&=
1
\\text{If $n=10:$ }&
(10-2)^3
\&=
(8)^3
\&=
512
.end{align*}
$$
begin{align*}
&text{a.i) } 8 && text{a.ii) } 12 && text{a.iii) } 6 && text{a.iv) } 1
\&text{b.i) } 8 && text{b.ii) } 96 && text{b.iii) } 384 && text{b.iv) } 512
\&text{c.i) } 8 && text{c.ii) } 12(n-2) && text{c.iii) } 6(n-2)^2 && text{c.iv) } (n-2)^3
\&text{d) see verification}
.end{align*}
$$
Step i) $4$
Step ii) $4+4^2$ equal to $20$
Step iii) $2025$
Hence, $45^2$ is equal to $2025.$
Step i) $a$
Step ii) $a+a^2$
Step iii) $100(a+a^2)+25$
The method above works all the time because the two-digit number ending in $5$, $underline{a}text{ }underline{5},$ is equal to $10a+5.$ When this number is squared, then
$$
begin{align*}
&
(10a+5)^2
\&=
(10a)^2+2(10a)(5)+5^2
\&=
100a^2+100a+25
\&=
100(a^2+a)+25
\&=
100(a+a^2)+25
.end{align*}
$$
The expression above is equivalent to Step iii.
b) see algebraic proof