All Solutions
Section 2-1: Adding and Subtracting Polynomials
$$
=4x^2-8x+8
$$
$$
=2x^2-4
$$
$$
=2x^2
$$
(b) $2x^2-4$
(c) $2x^2$
Remember that $a-(c-d+e)=a+(-c+d-e)$
$f(x)=(2x-1)-(3-4x)+(x+2)$
$f(x)=(2x-1)+(-3+4x)+(x+2)$
$f(x)=(2x+4x+x)+(-1-3+2)$
$f(x)=7x-2$
$g(x)=(-x+6)+(6x-9)-(-2x-1)$
$g(x)=(-x+6)+(6x-9)+(2x+1)$
$g(x)=(-x+6x+2x)+(6-9+1)$
$g(x)=7x-2$
Therefore, $f(x)=g(x)$
$g(x)=7x-2$
$$
therefore f(x)=g(x)
$$
$$
7x-2
$$
$$
7x-2
$$
We can choose $x=0$
$f(x)=2(x-3)+3(x-3)$
$f(0)=2(0-3)+3(0-3)$
$f(0)=2(-3)+3(-3)=-6-9=-15$
$g(x)=5(2x-6)$
$g(0)=5[2(0)-6]$
$g(0)=5(0-6)=-30$
Therefore, $f(x)neq g(x)$
$g(0)=-30$
$$
therefore f(x)neq g(x)
$$
a) $(2a+4c+8)+(7a-9c-3)$
$=(2a+7a)+(4c-9c)+(8-3)$
$=9a-5c+5$
b) $(3x+4y-5z)+(2x^2+6z)$
$=3x+4y+2x^2+(-5x+6z)$
$=3x+4y+2x^2+z$
c) $(6x+2y+9)+(-3x-5y-8)$
$=(6x-3x)+(2y-5y)+(9-8)$
$=3x-3y+1$
$=(2x^2+x^2)+(-7x-2x)+(6-9)$
$=3x^2-9x-3$
e) $(-4x^2-2xy)+(6x^2-3xy+2y^2)$
$=(-4x^2+6x^2)+(-2xy-3xy)+2y^2$
$=2x^2-5xy+2y^2$
f) $(x^2+y^2+8)+(4x^2-2y^2-9)$
$=(x^2+4x^2)+(y^2-2y^2)+(8-9)$
$=5x^2-y^2-1$
b) $2x^2+3x+4y+z$
c) $3x-3y+1$
d) $3x^2-9x-3$
e) $2x^2-5xy+2y^2$
f) $5x^2-y^2-1$
$$
begin{equation*}a-(b-c+d)=a+(-b+c-d)end{equation*}
$$
begin{align*}
bold{a)} ;; (m-n+2p)-(3n+p-7)
&= m-n+2p+(-3n-p+7)\
&= m+(-n-3n)+(2p-p)+7\
&= boxed{m-4n+p+7}
end{align*}
$$
begin{align*} bold{b)};; (-6m-2q+8)-(2m+2q+7)
&=(-6m-2q+8)+(-2m-2q-7)\
&=(-6m-2m)+(-2q-2q)+(8-7)\
&=boxed{-8m-4q+1}
end{align*}
$$
begin{align*} bold{c)};; (4a^2-9)-(a^3+2a-9)
&=(4a^2-9)+(-a^3-2a+9)\
&=4a^2-a^3-2a+(-9+9)\
&=boxed{4a^2-a^3-2a}
end{align*}
$$
begin{align*} bold{d)};; (2m^2-6mn+8n^2)\-(4m^2-mn-7n^2)
&=(2m^2-6mn+8n^2)+(-4m^2+mn+7n^2)\
&=(2m^2-4m^2)+(-6mn+mn)+(8n^2+7n^2)\
&=boxed{-2m^2-5mn+15n^2}
end{align*}
$$
begin{align*} bold{e)} ;;(3x^2+2y^2+7)-(4x^2-2y^2-8)
&=(3x^2+2y^2+7)+(-4x^2+2y^2+8)\
&=(3x^2-4x^2)+(2y^2+2y^2)+(7+8)\
&=boxed{-x^2+4y^2+15}\
end{align*}
$$
begin{align*} bold{f)} ;;5x^2-(2x^2-30)-(-20)
&=5x^2+(-2x^2+30)+(20)\
&=(5x^2-2x^2)+(30+20)\
&=boxed{3x^2+50}
end{align*}
$$
b) $-8m-4q+1$
c) $-a^3+4a^2-2a$
d) $-2m^2-5mn+15n^2$
e) $-x^2+4y^2+15$
f) $3x^2+50$
$$
begin{equation*}a-(b-c+d)=a+(-b+c-d)end{equation*}
$$
begin{align*}
bold{a)};;;;(2x-y)-(-3x+4y)+(6x-2y)&= (2x-y)+(3x-4y)+(6x-2y)\
&=(2x+3x+6x)+(-y-4y-2y)\
&=boxed{11x-7y}\
end{align*}
$$
begin{align*}
bold{b)};;;;(3x^2-2x)+(x^2-7x)-(7x+3)
&= (3x^2+x^2)+(-2x-7x-7x)+3\
&=boxed{4x^2-16x+3}\
end{align*}
$$
begin{align*}
bold{c)};;;;&(2x^2+xy-y^2)-(x^2-4xy-y^2)+(3x^2-5xy) \
&;;= (2x^2+xy-y^2)+(-x^2+4xy+y^2)+(3x^2-5xy)\
&;;=(2x^2-x^2+3x^2)+(xy+4xy-5xy)+(-y^2+y^2)\
&;;=boxed{4x^2}\
end{align*}
$$
begin{align*}
bold{d)};;;;&(xy-xz+4yz)+(2x-3yz)-(4y-xz)\
&;;;;= (xy-xz+4yz)+(2x-3yz)+(-4y+xz)\
&;;;;=xy+(-xz+xz)+(4yz-3yz)+2x-4y\
&;;;;=xy+0+yz+2x-4y\
&;;;;=boxed{xy+yz+2x-4y}\
end{align*}
$$
begin{align*} bold{e)};;;;left( frac{1}{2}x+dfrac{1}{3}yright)-left(dfrac{1}{5}x-yright)
&= left(frac{1}{2}x+frac{1}{3}yright)+left(-frac{1}{5}x+yright)\
&= left(frac{1}{2}x-frac{1}{5}xright)+left(frac{1}{3}y+yright)\
&= left(frac{5}{10}x-frac{2}{10}xright)+left(frac{1}{3}y+frac{3}{3}yright)\
&= boxed{ dfrac{3}{10}x+dfrac{4}{3}y}\
end{align*}
$$
begin{align*} bold{f)};;;;left(dfrac{3}{4}x+dfrac{1}{2}yright)-left(dfrac{2}{3}x+dfrac{1}{4}y-1right)
&= left(dfrac{3}{4}x+dfrac{1}{2}yright)+left(-dfrac{2}{3}x-dfrac{1}{4}y+1right)\
&= left(dfrac{3}{4}x-dfrac{2}{3}xright)+left(dfrac{1}{2}y-dfrac{1}{4}yright)+1\
&= left(dfrac{3(3)}{4(3)}x-dfrac{2(4)}{3(4)}xright)+left(dfrac{1(2)}{2(2)}y-dfrac{1}{4}yright)+1\
&= left(dfrac{9}{12}x-dfrac{8}{12}xright)+left(dfrac{2}{4}y-dfrac{1}{4}yright)+1\
&=boxed{dfrac{1}{12}x+dfrac{1}{4}y+1}\
end{align*}
$$
b) $4x^2-16x-3$
c) $4x^2$
d) $xy+yz+2x-4y$
e) $dfrac{3}{10}x+dfrac{4}{3}y$
f) $dfrac{1}{12}x+dfrac{1}{4}y+1$
$$
-2x^2neq-2x^2-2x
$$
$3-1-5+1neq-2-2$
$$
-3neq-4
$$
$$
begin{align*} (3x^2-x)-(5x^2-x)
&= (3x^2-x)+(-5x^2+x)\
&=(3x^2-5x^2)+(-x+x)\
&= -2x^2\ &neq -2x^2-2x
end{align*}
$$
Therefore, the two expressions are not equivalent.
The value of the first expression at $x=1$ is
$$
begin{align*} (3x^2-x)-(5x^2-x)
&= [3(1)^2-(1)]-[5(1)^2-1]\
&= (3-1)-(5-1)\
&= 2-4\
&=-2
end{align*}
$$
The value of the second expression at $x=1$ is
$$
begin{align*} -2x^2-2x
&= -2(1)^2-2(1)\
&=-2(1)-2\
&=-4
end{align*}
$$
Since the values of the expressions evaluated at one value of $x$ is not the same, the two expressions are not equivalent.
Method 2: Substitute $x=1$ to both expressions
begin{align*}
bold{a)};;;; f(x) &= (2x^2+7x-2)-(3x+7)\
&= (2x^2+7x-2)+(-3x-7)\
&=(2x^2)+(7x-3x)+(-2-7)\
&=2x^2+4x-9\\
g(x) &= (x^2+12)+(x^2+4x-17)\
&=(x^2+x^2)+4x+(12-17)\
&=2x^2+4x-5\\
&text{Therefore}, f(x)neq g(x)
end{align*}
$$
$$
begin{align*}
s_1(t) &= (t+2)^3\
&=t^3+3t^2(2)+3(t)(2^2)+2^3\
&=t^3+6t^2+12t+8\
&neq t^3+8\\
&text{Therefore}, s_1(t)neq s_2(t)
end{align*}
$$
$$
begin{align*} y_1 &= (x-1)(x)(x+2)\
&= (x-1)(x^2+2x)\
&=x^2(x-1)+2x(x-1)\
&=x^3-x^2+2x^2-2x\
&=x^3+x^2-2x\\
y_2&=3x(x^2-1)\
&=3x(x^2)-3x(1)\
&=3x^3-3x\\
&text{Therefore}, y_1neq y_2\
end{align*}
$$
$$
begin{align*} f(n) &= 0.5n^2+2n-3+(1.5n^2-6)\
&= (0.5n^2+1.5n^2)+2n+(-3-6)\
&=2n^2+2n-9\\
g(n) &= n^2-n+1-(-n^2-3n+10)\
&= n^2-n+1+(n^2+3n-10)\
&= n^2-n+1+n^2+3n-10\
&= (n^2+n^2)+(-n+3n)+(1-10)\
&=2n^2+2n-9\\
&text{Therefore}, f(n)=g(n)\
end{align*}
$$
$$
begin{align*} y_1&=3p(q-2)+2p(q+5)\
&= (3p)(q)+(3p)(-2)+(2p)q+(2p)(5)\
&= 3pq-6p+2pq+10p\
&= (3pq+2pq)+(-6p+10p)\
&= 5pq+4p\\
y_2&=p(q+4)\
&= pq+4p\\
&text{Therefore}, y_1 neq y_2\
end{align*}
$$
$$
begin{align*} f(m) &= m(5-m)-2(2m-m^2)\
&= 5m-m^2-(4m-2m^2)\
&= 5m-m^2+(-4m+2m^2)\
&= 5m-m^2-4m+2m^2\
&= (5m-4m)+(-m^2+2m^2)\
&= m+m^2\\
g(m) &= 4m^2(m-1)-3m^2+5m\
&= 4m^3-4m^2-3m^2+5m\
&= 4m^3+(-4m^2-3m^2)+5m\
&= 4m^3-7m^2+5m\\
&text{Therefore, } f(m)ne g(m)
end{align*}
$$
b) $s_1(t)neq s_2(t)$
c) $y_1neq y_2$
d) $f(n)=g(n)$
e) $y_1neq y_2$
f) $f(m)neq g(m)$
This is easier to do in factored form such that $f(0)=0$ and $f(2)=0$ implying that $(x)(x-2)$ must be a factor. To make them non-equivalent, we must multiply it when another factor that is different for $f(x)$ and $g(x)$
Here are some examples:
$f(x)=x(x-2)(x+1)$
$g(x)=x(x-2)(x+3)$
$f(x)=x(x-2)(3x+5)$
$g(x)=x(x-2)(5x+3)$
$f(x)=x(x-2)(x^2-2)$
$g(x)=x(x-2)(x^3+2x)$
$g(x)=x(x-2)(x+3)$
a) Kosuke’s number of questions answered incorrectly is
$$
begin{align*}
(25-x-y)text{ items}
.end{align*}
$$
b) Kosukes score is
$$
begin{align*}
&
6(x)+2(y)+1(25-x-y)
\&=
6x+2y+25-x-y
\&=
(5x+y+25)text{ points}
.end{align*}
$$
c) Using the result of (b), then with $x=13$ and $y=25-13-7=5,$ Kosuke’s score is
$$
begin{align*}
&
5x+y+25
\&=
5(13)+5+25
\&=
65+5+25
\&=
95text{ points}
.end{align*}
$$
b) $(5x+y+25)$ points
c) $95$ points
$4x+6y-2+w=7x+9y$
$$
w=3x+3y+2
$$
3x+3y+2
$$
$$
begin{align*}
P(x) &= R(x)-C(x)\
&= (-50x^2+2500x)-(150x+9500)\
&= (-50x^2+2500x)+(-150x-9500)\
&= -50x^2+(2500x-150x)-9500\
P(x) &=-50x^2+2350x-9500\
end{align*}
$$
$$
begin{align*} P(12)&=-50(12^2)+2350(12)-9500\
&=-50(144)+2350(12)-9500\
P(12)&=$11500 end{align*}
$$
b) $P(12)=$11500$
$-50x^2+2500x-150x-9500$
$$
-50x^2+2350x-9500
$$
$-7200+28200-9500$
$$
$11500
$$
$bold{b);;}$ We cannot conclude that they are non-equivalent because it is possible that $h(3)=h(4)$ and $g(3)=g(4)$ which lead to $h(3)=g(4)$. Thus, it cannot be determined.
$bold{c);;}$ At the same value of $x$, the two functions have different values, so it must be non-equivalent.
$bold{d);;}$ At the same value of $x$, the two functions have different values, so it must be non-equivalent.
$bold{e);;}$ $n(x)=p(x)$ for all $x$, so it must be equivalent.
b) cannot be determined
c) non-equivalent
d) non-equivalent
d) equivalent
b) He could simplify the three expressions and should find that two of them are identical. He could also substitute values of $x$ to the equations, and the one that resulted in the same value must be equivalent.
Let $x$ be any number on the calendar.\\
begin{tabular}{|l|ll}
cline{1-1}
$x$ & & \ cline{1-1}
$x+7$ & & \ hline
multicolumn{1}{|c|}{$x+14$} & multicolumn{1}{c|}{$x+15$} & multicolumn{1}{c|}{$x+16$} \ hline
end{tabular}\\\
vertical entries (column): $x$, $x+7$, $x+14$\\
corner number: $x+14$\\
horizontal entries (row): $x+14$, $x+15$, $x+16$\\
The patterns says the sum of the five numbers is equal to five times the corner number minus 18.\\
sum of five numbers: begin{equation*}(x)+(x+7)+(x+14)+(x+15)+(x+16)=boxed{5x+52}end{equation*}
five times the corner number minus: begin{equation*} 18 = 5(x+14)-18=5x+70-18=boxed{5x+52}end{equation*}\
Since both expressions are equal to $5x+52$, this is true for any number $x$ on the calendar.\\
$$
begin{align*} 5x+52&=112\
5x&=112-52 \
5x&=60\
x&=12 end{align*}
$$
The corner number is $x+14=12+14=boxed{26}$
$5(x-14)+52=5x-70+52=boxed{5x-18}$\\
Alternatively, we can predict from the pattern that the entries would be:\\
begin{tabular}{|l|ll}
cline{1-1}
$x-14$ & & \ cline{1-1}
$x-7$ & & \ hline
multicolumn{1}{|c|}{$x$} & multicolumn{1}{c|}{$x+1$} & multicolumn{1}{c|}{$x+2$} \ hline
end{tabular}\\
So the sum is\\
$x+(x+1)+(x+2)+(x-7)+(x-14)=boxed{5x-18}$\\
b) 26
c) $5x-18$
$$
begin{align*} x+(x+1)+(x+2)+(x+3)+(x+4)&=105\
5x+10&=105\
5x&=95\
x&=19
end{align*}
$$
Therefore, the give consecutive numbers are
$$
19+20+21+22+23=105
$$
This suggests that if $m=dfrac{n}{5}$, then $m$ must be the middle term which leads to
$$
n=(m-2)+(m-1)+(m)+(m+1)+(m+2)
$$
$$
begin{align*}
x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+(x+6)&=91\
7x+21&=91\
7x&=70\
x&=10
end{align*}
$$
Therefore, $10+11+12+13+14+15+16=91$
b) $n=(m-2)+(m-1)+m+(m+1)+(m+2)$
c) $10+11+12+13+14+15+16$
$$
begin{align*}
f(x)&=ax+b
\
f(2)&=a(2)+b
\
f(2)&=2a+b
\\text{and}\\
g(x)&=cx+d
\
g(2)&=c(2)+d
\
g(2)&=2c+d
.end{align*}
$$
Since it is given that $f(2)=g(2),$ then
$$
begin{align}
2a+b=2c+d
.end{align}
$$
Substituting $x=5$ in the given functions, then
$$
begin{align*}
f(x)&=ax+b
\
f(5)&=a(5)+b
\
f(5)&=5a+b
\\text{and}\\
g(x)&=cx+d
\
g(5)&=c(5)+d
\
g(5)&=5c+d
.end{align*}
$$
Since it is given that $f(5)=g(5),$ then
$$
begin{align}
5a+b=5c+d
.end{align}
$$
$$
begin{align*}
2a+b-(5a+b)&=2c+d-(5c+d)
\
2a+b-5a-b&=2c+d-5c-d
\
-3a&=-3c
\
a&=c
.end{align*}
$$
Using $a=c$ in equation (1) results to
$$
begin{align*}
2a+b&=2c+d
\
2c+b&=2c+d
\
2c-2c+b&=d
\
b&=d
.end{align*}
$$
Since $a=c$ and $b=d,$ then
$$
begin{align*}
f(x)&=ax+b
\&=
cx+d
\&=g(x)
.end{align*}
$$
Hence, $f(x)$ and $g(x)$ are equivalent.