Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 466: Check Your Understanding

Exercise 1
Step 1
1 of 4
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 4
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 4
Notice that each term on the triangle is the sum of the two terms above it.

Since the first 4 terms of row 12 consists of $1$, $12$, $66$ and $220$

The first 3 terms of row 13, should be

$1+12=13$

$12+66=78$

$220+66=286$.

Result
4 of 4
$13$, $78$ , $286$
Exercise 2
Step 1
1 of 9
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 9
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 9
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) Based on the exponent $n$ locate the $n^{th}$ row in the triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 9
a.) $(x+2)^5$

In this case, $n=5$, from the Pascal’s triangle, the terms at the $5th$ row are $1,5,10,10,5,1$.

It might help you to construct a table showing the coefficient and the corresponding exponent of terms. Then just multiply the terms from the first 3 columns to get the term.

Step 5
5 of 9
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $x$ & $2$ & Term \ hline
1 & $x^5$ & $2^0$ & $x^5$ \
5 & $x^4$ & $2^1$ & $10x^4$ \
10 & $x^3$ & $2^2$ & $40x^3$ \
10 & $x^2$ & $2^3$ & $80x^2$ \
5 & $x^1$ & $2^4$ & $80x$ \
1 & $x^0$ & $2^5$ & $32$ \ hline
end{tabular}
end{table}

Therefore\\
$(x+2)^5=x^5+10x^4+40x^3+80x^2+80x+32$

Step 6
6 of 9
b.) $(x-1)^6$

for $n=6$, the coefficients are $1,;6,;15,;20,;15,;6,;1$

Step 7
7 of 9
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $x$ & $(-1)$ & Term \ hline
1 & $x^6$ & $(-1)^0$ & $x^6$ \
6 & $x^5$ & $(-1)^{1}$ & $-6x^5$ \
15 & $x^4$ & $(-1)^{2}$ & $15x^4$ \
20 & $x^3$ & $(-1)^{3}$ & $-20x^3$ \
15 & $x^2$ & $(-1)^{4}$ & $15x^2$ \
6 & $x^1$ & $(-1)^{5}$ & $-6x$ \
1 & $x^0$ & $(-1)^{6}$ & 1 \ hline
end{tabular}
end{table}
Therefore\\
$(x-1)^6=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$
Step 8
8 of 9
c.) $(2x-3)^3$

for $n=3$, the coefficients are $1,3,3,1$

Therefore,

$(2x-3)^3=(2x)^3(-3)^0+(2x)^2(-3)^1+(2x)^1(-3)^2+(2x)^0(-3)^3$

$$
=8x^3-36x^2+54x-27
$$

Result
9 of 9
a.) $(x+2)^5=x^5+10x^4+40x^3+80x^2+32$

b.) $(x-1)^6=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$

c.) $(2x-3)^3=8x^3-36x^2+54x-27$

Exercise 3
Step 1
1 of 7
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 7
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 7
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 7
a.) We need to find the first three terms of $(x+5)^{10}$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula $S_n=0.5n(n-1)$.

Thus for $n=10$, the first three coefficients are $1,10$ and $0.5(10)(9)=45$.

Therefore,

$(x+5)^{10}=x^{10}cdot 5^0 + 10x^9cdot 5^1+45x^8cdot 5^2+…$

$$
implies x^{10}+50x^9+1125x^8+…
$$

Step 5
5 of 7
b.) In this case, $(x-2)^8$, $n=8$

Following the method in part (a), the first three coefficients are:

$1, 8,$ and $(0.5)(8)(7)=28$.

Therefore,

$(x-2)^8=1cdot x^8cdot (-2)^0+8cdot x^7cdot (-2)^1+28cdot x^6cdot (-2)^2+….$

$$
implies x^8-16x^7+112x^6+…
$$

Step 6
6 of 7
c.) In this case, $(2x-7)^9$, $n=9$

Following the method in part (a), the first three coefficients are:

$1, 9,$ and $(0.5)(9)(8)=36$.

Therefore,

$(2x-7)^9=1cdot (2x)^9cdot (-7)^0+9cdot (2x)^8cdot (-7)^1+36cdot (2x)^7cdot (-7)^2+….$

$$
implies 512x^9-16;128x^8+225;729x^7+…
$$

Result
7 of 7
a.) $x^{10}+50x^9+1125x^8+…$

b.) $x^8-16x^7+112x^6+…$

c.) $512x^9-16;128x^8+225;729x^7+…$

Exercise 4
Step 1
1 of 11
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 11
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 11
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) Based on the exponent $n$ locate the $n^{th}$ row in the triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 11
a.) $(k+3)^4$

In this case, $n=4$, from the Pascal’s triangle, the terms at the $4th$ row are $1,4,6,4,1$.

It might help you to construct a table showing the coefficient and the corresponding exponent of terms. Then just multiply the terms from the first 3 columns to get the term.

Step 5
5 of 11
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $k$ & $3$ & Term \ hline
1 & $k^4$ & $(3)^0$ & $k^4$ \
4 & $k^3$ & $(3)^{1}$ & $12k^3$ \
6 & $k^2$ & $(3)^{2}$ & $54k^4$ \
4 & $k^1$ & $(3)^{3}$ & $108k$ \
1 & $k^0$ & $(3)^{4}$ & $81$ \ hline
end{tabular}
end{table}
Therefore\\
$(k+3)^4=k^4+12k^3+54k^2+108k+81$
Step 6
6 of 11
b.) $(y-5)^6$

Refer to the row 6 of Pascal’s triangle which consists of 1,6,15,20,15,6,1

Therefore

$(y-5)^6$

$=1cdot y^6cdot (-5)^0\+6cdot y^5 cdot (-5)^1\+15cdot y^4cdot (-5)^2\+20cdot y^3cdot (-5)^3\+15cdot y^2cdot (-5)^4\+6cdot y^1 cdot (-5)^5\+1cdot y^0 cdot (-5)^6$

$$
=y^6-30y^5+375y^4-2500y^3+9375y^2-18750y+15625
$$

Step 7
7 of 11
c.) $(3q-4)^4$

At row 4, the coefficients are $1,4,6,4,1$

$(3q-4)^4$

$=1cdot(3q)^4cdot(-4)^0\
+4cdot(3q)^3cdot(-4)^1\
+6cdot(3q)^2cdot(-4)^2\
+4cdot(3q)^1cdot(-4)^3\
+1cdot(3q)^0cdot(-4)^4\$\\$=81q^4-432q^3+864q^2-768q+256$

Step 8
8 of 11
d.) $(2x+7y)^3$

for $n=3$, the coefficients are $1,3,3,1$

$(2x+7y)^3$

$=1cdot (2x)^3cdot(7y)^0\
+3cdot (2x)^2cdot(7y)^1\
+3cdot (2x)^1cdot(7y)^2\
+1cdot (2x)^0cdot(7y)^3\$\\$=8x^3+84x^2y+294xy^2+343y^3$

Step 9
9 of 11
e.) $(sqrt{2}x+sqrt{3})^6$

for $n=6$, the coefficients are $1,6,15,20,15,6,1$

$=1cdot left( sqrt{2} xright)^6 cdot left( sqrt{3} right)^{0}\
+6cdot left( sqrt{2} xright)^5 cdot left( sqrt{3} right)^{1}\
+15cdot left( sqrt{2} xright)^4 cdot left( sqrt{3} right)^{2}\
+20cdot left( sqrt{2} xright)^3 cdot left( sqrt{3} right)^{3}\
+15cdot left( sqrt{2} xright)^2 cdot left( sqrt{3} right)^{4}\
+6cdot left( sqrt{2} xright)^1 cdot left( sqrt{3} right)^{5}\
+1cdot left( sqrt{2} xright)^0 cdot left( sqrt{3} right)^{6}\$\\$=8x^6+24$sqrt{6}$ x^5+180x^4+120$sqrt{6}$ x^3+270x^2+54$sqrt{6}$ x + 27$

Step 10
10 of 11
e.) $(2z^3+3y^2)^5$

for $n=5$, the coefficients are $1,5,10,5,1$

$=1cdot left( 2z^3 right)^5 cdot left( 3y^2 right)^{0}\
+5cdot left( 2z^3 right)^4 cdot left( 3y^2 right)^{1}\
+10cdot left( 2z^3 right)^3 cdot left( 3y^2 right)^{2}\
+10cdot left( 2z^3 right)^2 cdot left( 3y^2 right)^{3}\
+5cdot left( 2z^3right)^1 cdot left( 3y^2 right)^{4}\
+1cdot left( 2z^3 right)^0 cdot left( 3y^2 right)^{5}\$\\$=32z^{15}-240z^{12}y^2+720z^9y^4-1080z^6y^6+810z^3y^8-243y^{10}$

Result
11 of 11
a.) $(x+2)^5=x^5+10x^4+40x^3+80x^2+32$

b.) $y^6-30y^5+375y^4-2500y^3+9375y^2-18750y+15625$

c.) $81q^4-432q^3+864q^2-768q+256$

d.) $8x^6+24sqrt{6} x^5+180x^4+120sqrt{6} x^3+270x^2+54sqrt{6} x + 27$

e.) $32z^{15}-240z^{12}y^2+720z^9y^4-1080z^6y^6+810z^3y^8-243y^{10}$

Exercise 5
Step 1
1 of 10
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 10
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 10
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 10
Here, we need to find the first three terms of an expansion $(a+b)^n$.

In Pascal’s triangle

(1) The first number in each row is 1

(2) The second number is equal to the row number (called counting number)

(3) The third number is a triangular number given by the formula

$S_n=0.5n(n-1)$

Step 5
5 of 10
a.) In this case, $(x-2)^{13}$

When $n=13$, the first three numbers are:

$1, ;13,;$ and $(0.5)(13)(13-1)=78$.

Therefore,

$(x-2)^{13}=1cdot x^{13}cdot (-2)^0+13cdot x^{12}cdot (-2)^1+78x^{11}cdot (-2)^2+…$

$$
(x-2)^{13}=x^{13}-26x^{12}+312x^{11}+…
$$

Step 6
6 of 10
b.) In this case, $(3y+5)^9$

When $n=9$, the first three numbers are:

$1,;9;,$ and $(0.5)(9)(9-1)=36$

Therefore,

$(3y+5)^9=1cdot(3y)^9cdot (5)^0+9cdot (3y)^8cdot 5^{1}+36cdot (3y)^7cdot 5^2+…$

$$
(3y+5)^9=19683y^9+295245y^8+1;968;300y^7+…
$$

Step 7
7 of 10
c.) In this case, $(z^5-z^3)^{11}$,

When $n=11$, the first three numbers are:

$1,11,$ and $(0.5)(11)(11-1)=55$

Therefore,

$(z^5-z^3)^{11}=1cdot(z^5)^{11}cdot (-z^3)^0+11cdot (z^5)^{10}cdot (-z^3)^{1}+55cdot (z^5)^9cdot (-z^3)^2+…$

$$
(z^5-z^3)^{11}=z^{55}-11z^{53}+55z^{51}+…
$$

Step 8
8 of 10
d.) In this case, $left(3b^2+dfrac{2}{b}right)^{14}$

When $n=14$, the first three numbers are:

$1,14,$ and $(0.5)(14)(14-1)=91$

Therefore,

$left(3b^2+dfrac{2}{b}right)^{14}=1cdot (3b^2)^{14}cdot left(dfrac{2}{b}right)^{0}+14cdot (3b^2)^{13}cdot left(dfrac{2}{b}right)^{1}+91cdot (3b^2)^{12}cdot left(dfrac{2}{b}right)^{2}+…$

$$
left(3b^2+dfrac{2}{b}right)^{14}=4;782;969b^{28}-44;641;044b^{25}+193;444;524b^{22}+…
$$

Step 9
9 of 10
e.) In this case, $left(5x^3+3y^2right)^{8}$

In row 8, the first three numbers in the triangle are:

$1,8,$ and $(0.5)(8)(7)=28$

Therefore,

$left(5x^3+3y^2right)^{8}=1cdot (5x^3)^{8}cdot left(3y^2right)^{0}+8cdot (5x^3)^{7}cdot left(3y^2right)^{1}+91cdot (5x^3)^{6}cdot left( 3y^2 right)^{2}+…$

$$
left(5x^3+3y^2right)^{8}=390;625x^{24}+1;875;000x^{21}y^2+39;375;000x^{18}y^4+…
$$

Result
10 of 10
a.)$(x-2)^{13}=x^{13}-26x^{12}+312x^{11}+…$

b.) $(3y+5)^9=19683y^9+295;245y^8+1;968;300y^7+…$

c.) $(z^5-z^3)^{11}=z^{55}-11z^{53}+55z^{51}+…$

d.) $left(3b^2+dfrac{2}{b}right)^{14}=4;782;969b^{28}-44;641;044b^{25}+193;444;524b^{22}+…$

e.) $left(5x^3+3y^2right)^{8}=390;625x^{24}+1;875;000x^{21}y^2+39;375;000x^{18}y^4+…$

Exercise 6
Step 1
1 of 6
The terms in the Pascal triangle from row 0 to row 6 is shown below.
Step 2
2 of 6
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 6
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 6
a.) In this case, we shall express $2^{n}$ as a binomial expansion.

$2^{n}=(1+1)^n$

If the $n^{th}$ row consists of the following $t_0,;t_1,;t_2,;t_3,;…t_n$,

$2^n=t_0cdot 1^ncdot 1^{0}+t_1cdot 1^{n-1}cdot 1^1+t_3cdot 1^{n-2}cdot 1^2+…+t_ncdot 1^0cdot 1^n$

$2^n=t_0+t_1+t_2+t_3+…+t_n$

This suggests that the sum of the terms on the $n^{th}$ row of Pascal’s triangle is $2^n$.

For instance,

in row 4: $1+4+6+4+1=2^4$

in row 5: $1+5+10+10+5+1=2^5$

Step 5
5 of 6
b.) This time, we shall express $0^n$ as a binomial expansion.

$0^n=(1-1)^n$

Following the notations in part(a),

$0^n=t_0cdot 1^ncdot (-1)^{0}+t_1cdot 1^{n-1}cdot (-1)^1+t_3cdot 1^{n-2}cdot (-1)^2+…+t_ncdot 1^0cdot (-1)^n$

$0^n=t_0-t_1+t_2+…pm t_n$

Observe the alternating signs of the expansion. Also, in any row of the Pascal triangle, we alternate the signs of each term, for example

row 4: $1-4+6-4+1=0$

row 5: $1-5+10-10+5-1=0$

Thus, we have shown by binomial expansion that

$$
0^n=(1-1)^n=0
$$

Result
6 of 6
a.) $2^n=t_0+t_1+t_2+t_3+…+t_{n-1}+t_n$

b.) $0^n=t_0-t_1+t_2+…pm t_n$

Exercise 7
Step 1
1 of 7
[begin{gathered}
{text{This time we need to verify that }} hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right] hfill \
{text{corresponds to the }}{{text{n}}^{th}}{text{term of Fibonacci sequence}}{text{.}} hfill \
end{gathered} ]
Step 2
2 of 7
[begin{gathered}
{text{for }}n = 1 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^1} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^1}} right] hfill \
= frac{1}{{2sqrt 5 }}left[ {left( {1 + sqrt 5 } right) – left( {1 – sqrt 5 } right)} right] hfill \
= frac{1}{{2sqrt 5 }}left( {1 + sqrt 5 – 1 + sqrt 5 } right) hfill \
= frac{1}{{2sqrt 5 }}left( {2sqrt 5 } right) = 1 hfill \
end{gathered} ]
Step 3
3 of 7
[begin{gathered}
{text{for }}n = 2 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^2} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^2}} right] hfill \
= frac{1}{{{2^2}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^2} – {{left( {1 – sqrt 5 } right)}^2}} right] hfill \
hfill \
{text{Use the factors for the difference of two squares }} hfill \
{a^2} – {b^2} = left( {a + b} right)left( {a – b} right) hfill \
hfill \
= frac{1}{{{2^2}sqrt 5 }}left[ {left( {1 + sqrt 5 + 1 – sqrt 5 } right)left( {1 + sqrt 5 – left( {1 – sqrt 5 } right)} right)} right] hfill \
= frac{1}{{4sqrt 5 }}left[ {2left( {1 + sqrt 5 – 1 + sqrt 5 } right)} right] hfill \
= frac{1}{{4sqrt 5 }}left( {4sqrt 5 } right) = 1 hfill \
end{gathered} ]
Step 4
4 of 7
[begin{gathered}
{text{for }}n = 3 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^3} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^3}} right] hfill \
= frac{1}{{{2^3}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^3} – {{left( {1 – sqrt 5 } right)}^3}} right] hfill \
hfill \
{text{Use the factors for the difference of two cubes}} hfill \
{text{ }}{a^3} – {b^3} = left( {a – b} right)left( {{a^2} + ab + {b^2}} right) hfill \
hfill \
{text{ = }}frac{1}{{8sqrt 5 }}left[ {left( {1 + sqrt 5 – left( {1 – sqrt 5 } right)} right)left( {{{left( {1 + sqrt 5 } right)}^2} + left( {1 + sqrt 5 } right)left( {1 – sqrt 5 } right) + {{left( {1 – sqrt 5 } right)}^2}} right)} right] hfill \
= frac{1}{{8sqrt 5 }}left[ {left( {1 + sqrt 5 – 1 + sqrt 5 } right)left( {left( {1 + 2sqrt 5 + 5} right) + left( {1 – 5} right) + left( {1 – 2sqrt 5 + 5} right)} right)} right] hfill \
= frac{1}{{8sqrt 5 }}left( {2sqrt 5 } right)left( {6 + 2sqrt 5 – 4 + 6 – 2sqrt 5 } right) hfill \
= frac{1}{{8sqrt 5 }}left( {2sqrt 5 } right)left( 8 right) = 2 hfill \
end{gathered} ]
Step 5
5 of 7
[begin{gathered}
{text{for }}n = 4 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^4} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^4}} right] hfill \
= frac{1}{{{2^4}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^4} – {{left( {1 – sqrt 5 } right)}^4}} right] hfill \
hfill \
{text{Use the factors for the difference of two squares }} hfill \
{a^4} – {b^4} = left( {{a^2} + {b^2}} right)left( {{a^2} – {b^2}} right) hfill \
hfill \
= frac{1}{{16sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^2} + {{left( {1 – sqrt 5 } right)}^2}} right]left[ {{{left( {1 + sqrt 5 } right)}^2} – {{left( {1 – sqrt 5 } right)}^2}} right] hfill \
= frac{1}{{16sqrt 5 }}left[ {left( {1 + 2sqrt 5 + 5} right) + left( {1 – 2sqrt 5 + 5} right)} right]left[ {left( {1 + 2sqrt 5 + 5} right) – left( {1 – 2sqrt 5 + 5} right)} right] hfill \
= frac{1}{{16sqrt 5 }}left( {12} right)left( {4sqrt 5 } right) = 3 hfill \
end{gathered} ]
Step 6
6 of 7
[begin{gathered}
{text{Therefore,}} hfill \
{t_n} = frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right] hfill \
{text{corresponds to the }}{{text{n}}^{th}}{text{term of Fibonacci sequence}}{text{.}} hfill \
end{gathered} ]
Result
7 of 7
$$
{t_n} = frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right]
$$
Exercise 8
Step 1
1 of 4
We need to use the given diagram to find the number of ways that Joan can travel from her house to the school which is any combination of $5$ eastward steps and $5$ northward steps.
Step 2
2 of 4
Here, we label the number of ways that Joan can reach any intersection.

All intersections labeled as 1 means there is only one way that Joan can reach that point. For example, the only way to reach the northwest corner is to walk straight 5 N steps.

The intersection labeled as $2$ means there are two ways to reach that point. It could either be (N+E) or (E+N).

For the intersection labeled $3$ on the second column, it could be (N+N+E), (E+N+N) or (N+E+N).

Observe that the number of ways to reach each intersection is the sum of its immediate west and south. Therefore, this appears follow the Pascal triangle.

If we follow the pattern, we’ll find that that the number ways to reach the school is 252.

Exercise scan

Step 3
3 of 4
Alternatively, this is just the number of ways we can combine 5 N’s and 5 E’s which is

$_{10}C_{5}=dfrac{10!}{(10-5)!5!}=dfrac{10!}{5!cdot 5!}=252$

Result
4 of 4
$252$ ways
Exercise 9
Step 1
1 of 5
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 4
4 of 5
We shall find the first three terms of $(x+y+z)^{10}$

$[(x+y)+z]^{10}$

When $n=10$, the first three coefficients are $1,;10,;0.5(10)(10-1)=45$

Therefore,

$[(x+y)+z]^{10}$

$=1cdot(x+y)^{10}cdot z^{0}+10cdot (x+y)^9cdot z^1+45cdot (x+y)^8cdot z^2+…+1cdot (x+y)^0cdot z^{10}$

$$
[(x+y)+z]^{10}=(x+y)^{10}+10(x+y)^9z+45(x+y)^8z^2+…+z^{10}
$$

Result
5 of 5
$$
[(x+y)+z]^{10}=(x+y)^{10}+10(x+y)^9z+45(x+y)^8z^2+…+z^{10}
$$
Exercise 10
Step 1
1 of 5
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 4
4 of 5
In this exercise, we shall expand $(3x-5y)^6$

When $n=6$, the terms in the Pascal’s triangle are $1,;6,;15,;20,;15,;6,;1$

$(3x-5y)^6$

$=1cdot (3x)^6cdot (-5y)^0\
+6cdot (3x)^5cdot (-5y)^1\
+15cdot (3x)^4cdot (-5y)^2\
+20cdot (3x)^3cdot (-5y)^3\
+15cdot (3x)^2cdot (-5y)^4\
+6cdot (3x)^1cdot (-5y)^5\
+1cdot (3x)^0cdot (-5y)^6$

$$
=729x^6-7290x^5y+30;375x^4y^2-67500x^3y^3+84;375 x^2y^2-56250xy^5+15625y^6
$$

Result
5 of 5
$$
729x^6-7290x^5y+30;375x^4y^2-67500x^3y^3+84;375 x^2y^2-56250xy^5+15625y^6
$$
Exercise 11
Step 1
1 of 2
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 2
2 of 2
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Exercise 12
Step 1
1 of 4
The general formula for a cubic relation is

$t_n=An^3+Bn^2+Cn+D$

The first difference of any consecutive term $t_{n}$ and $t_{n+1}$ is

Step 2
2 of 4
[begin{gathered}
{t_{n + 1}} – {t_n} = Aleft[ {{{left( {n + 1} right)}^3} – {n^3}} right] + Bleft[ {{{left( {n + 1} right)}^2} – {n^2}} right] + Cleft[ {left( {n + 1} right) – n} right] + Dleft( {1 – 1} right) hfill \
{t_{n + 1}} – {t_n} = Aleft( {{n^3} + 3{n^2} + 3n + 1 – {n^3}} right) + Bleft( {{n^2} + 2n + 1 – {n^2}} right) + C cdot left( 1 right) hfill \
{t_{n + 1}} – {t_n} = Aleft( {3{n^2} + 3n + 1} right) + Bleft( {2n + 1} right) + C hfill \
{t_{n + 1}} – {t_n} = {n^2}left( {3A} right) + nleft( {3A + 2B} right) + left( {A + B + C} right) hfill \
end{gathered} ]
Step 3
3 of 4
[begin{gathered}
{text{Therefore, the first differences is a quadratic with respect to }}n hfill \
{text{Knowing that the second differences of a quadratic function is constant,}} hfill \
{text{it follows that the third differences of a cubic function is constant}}{text{.}} hfill \
end{gathered} ]
Result
4 of 4
The third differences of a cubic function is constant.
Exercise 13
Step 1
1 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 2
2 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 3
3 of 5
[begin{gathered}
{mathbf{Probability}},{mathbf{and}},{mathbf{Binomial}},{mathbf{Expansion}} hfill \
{text{If the probability that an event will occur is }}x{text{ and the probability}} hfill \
{text{that it will not occur is }}y.,,{text{Then the probability that the event will occur}} hfill \
{text{exactly }}n,{text{times out of }}m,;{text{trials is the }}{left( {m – n + 1} right)^{th}},{text{term of the binomial expansion}} hfill \
hfill \
{P_n} = {left( {x + y} right)^m} hfill \
end{gathered} ]
Step 4
4 of 5
[begin{gathered}
{text{In every flip, the probability that we get head is }}frac{1}{2}{text{ since there}} hfill \
{text{are only two possibilities }}left( {{text{head or tail}}} right). hfill \
hfill \
{text{Therefore, for 10 flips }} Rightarrow m = 10 hfill \
{text{The first 3 terms in Pascal’s triangle are 1, 10, and 0}}{text{.5(10)(10}} – 1) = 45 hfill \
hfill \
{left( {frac{1}{2} + frac{1}{2}} right)^{10}} = 1 cdot {left( {frac{1}{2}} right)^{10}}{left( {frac{1}{2}} right)^0} + 10 cdot {left( {frac{1}{2}} right)^9}{left( {frac{1}{2}} right)^1} + 45 cdot {left( {frac{1}{2}} right)^8}{left( {frac{1}{2}} right)^2} + … hfill \
{left( {frac{1}{2} + frac{1}{2}} right)^{10}} = frac{1}{{1024}} + frac{5}{{1024}} + frac{{45}}{{1024}} + … hfill \
hfill \
{text{The probability of }}n,{text{heads is the }}{left( {m – n + 1} right)^{th,}}{text{term,}} hfill \
{text{ probability of 10}},{text{heads}}, = ,,left( {10 – 10 + 1} right){text{or 1st term = }}frac{1}{{1024}}, hfill \
,{text{probability of 9 heads}} = left( {10 – 9 + 1} right),{text{or 2nd term }};{text{ = }}frac{5}{{1024}} hfill \
,{text{probability of 8 heads = }}left( {10 – 8 + 1} right),{text{ or 3rd term = }}frac{{45}}{{1024}} hfill \
end{gathered} ]
Result
5 of 5
probability of 8 heads is $dfrac{45}{1024}$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New