Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Page 466: Check Your Understanding

Exercise 1
Step 1
1 of 4
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 4
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 4
Notice that each term on the triangle is the sum of the two terms above it.

Since the first 4 terms of row 12 consists of $1$, $12$, $66$ and $220$

The first 3 terms of row 13, should be

$1+12=13$

$12+66=78$

$220+66=286$.

Result
4 of 4
$13$, $78$ , $286$
Exercise 2
Step 1
1 of 9
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 9
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 9
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) Based on the exponent $n$ locate the $n^{th}$ row in the triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 9
a.) $(x+2)^5$

In this case, $n=5$, from the Pascal’s triangle, the terms at the $5th$ row are $1,5,10,10,5,1$.

It might help you to construct a table showing the coefficient and the corresponding exponent of terms. Then just multiply the terms from the first 3 columns to get the term.

Step 5
5 of 9
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $x$ & $2$ & Term \ hline
1 & $x^5$ & $2^0$ & $x^5$ \
5 & $x^4$ & $2^1$ & $10x^4$ \
10 & $x^3$ & $2^2$ & $40x^3$ \
10 & $x^2$ & $2^3$ & $80x^2$ \
5 & $x^1$ & $2^4$ & $80x$ \
1 & $x^0$ & $2^5$ & $32$ \ hline
end{tabular}
end{table}

Therefore\\
$(x+2)^5=x^5+10x^4+40x^3+80x^2+80x+32$

Step 6
6 of 9
b.) $(x-1)^6$

for $n=6$, the coefficients are $1,;6,;15,;20,;15,;6,;1$

Step 7
7 of 9
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $x$ & $(-1)$ & Term \ hline
1 & $x^6$ & $(-1)^0$ & $x^6$ \
6 & $x^5$ & $(-1)^{1}$ & $-6x^5$ \
15 & $x^4$ & $(-1)^{2}$ & $15x^4$ \
20 & $x^3$ & $(-1)^{3}$ & $-20x^3$ \
15 & $x^2$ & $(-1)^{4}$ & $15x^2$ \
6 & $x^1$ & $(-1)^{5}$ & $-6x$ \
1 & $x^0$ & $(-1)^{6}$ & 1 \ hline
end{tabular}
end{table}
Therefore\\
$(x-1)^6=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$
Step 8
8 of 9
c.) $(2x-3)^3$

for $n=3$, the coefficients are $1,3,3,1$

Therefore,

$(2x-3)^3=(2x)^3(-3)^0+(2x)^2(-3)^1+(2x)^1(-3)^2+(2x)^0(-3)^3$

$$
=8x^3-36x^2+54x-27
$$

Result
9 of 9
a.) $(x+2)^5=x^5+10x^4+40x^3+80x^2+32$

b.) $(x-1)^6=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$

c.) $(2x-3)^3=8x^3-36x^2+54x-27$

Exercise 3
Step 1
1 of 7
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 7
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 7
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 7
a.) We need to find the first three terms of $(x+5)^{10}$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula $S_n=0.5n(n-1)$.

Thus for $n=10$, the first three coefficients are $1,10$ and $0.5(10)(9)=45$.

Therefore,

$(x+5)^{10}=x^{10}cdot 5^0 + 10x^9cdot 5^1+45x^8cdot 5^2+…$

$$
implies x^{10}+50x^9+1125x^8+…
$$

Step 5
5 of 7
b.) In this case, $(x-2)^8$, $n=8$

Following the method in part (a), the first three coefficients are:

$1, 8,$ and $(0.5)(8)(7)=28$.

Therefore,

$(x-2)^8=1cdot x^8cdot (-2)^0+8cdot x^7cdot (-2)^1+28cdot x^6cdot (-2)^2+….$

$$
implies x^8-16x^7+112x^6+…
$$

Step 6
6 of 7
c.) In this case, $(2x-7)^9$, $n=9$

Following the method in part (a), the first three coefficients are:

$1, 9,$ and $(0.5)(9)(8)=36$.

Therefore,

$(2x-7)^9=1cdot (2x)^9cdot (-7)^0+9cdot (2x)^8cdot (-7)^1+36cdot (2x)^7cdot (-7)^2+….$

$$
implies 512x^9-16;128x^8+225;729x^7+…
$$

Result
7 of 7
a.) $x^{10}+50x^9+1125x^8+…$

b.) $x^8-16x^7+112x^6+…$

c.) $512x^9-16;128x^8+225;729x^7+…$

Exercise 4
Step 1
1 of 11
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 11
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 11
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) Based on the exponent $n$ locate the $n^{th}$ row in the triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 11
a.) $(k+3)^4$

In this case, $n=4$, from the Pascal’s triangle, the terms at the $4th$ row are $1,4,6,4,1$.

It might help you to construct a table showing the coefficient and the corresponding exponent of terms. Then just multiply the terms from the first 3 columns to get the term.

Step 5
5 of 11
begin{table}[]
begin{tabular}{llll}
hline
coefficient & $k$ & $3$ & Term \ hline
1 & $k^4$ & $(3)^0$ & $k^4$ \
4 & $k^3$ & $(3)^{1}$ & $12k^3$ \
6 & $k^2$ & $(3)^{2}$ & $54k^4$ \
4 & $k^1$ & $(3)^{3}$ & $108k$ \
1 & $k^0$ & $(3)^{4}$ & $81$ \ hline
end{tabular}
end{table}
Therefore\\
$(k+3)^4=k^4+12k^3+54k^2+108k+81$
Step 6
6 of 11
b.) $(y-5)^6$

Refer to the row 6 of Pascal’s triangle which consists of 1,6,15,20,15,6,1

Therefore

$(y-5)^6$

$=1cdot y^6cdot (-5)^0\+6cdot y^5 cdot (-5)^1\+15cdot y^4cdot (-5)^2\+20cdot y^3cdot (-5)^3\+15cdot y^2cdot (-5)^4\+6cdot y^1 cdot (-5)^5\+1cdot y^0 cdot (-5)^6$

$$
=y^6-30y^5+375y^4-2500y^3+9375y^2-18750y+15625
$$

Step 7
7 of 11
c.) $(3q-4)^4$

At row 4, the coefficients are $1,4,6,4,1$

$(3q-4)^4$

$=1cdot(3q)^4cdot(-4)^0\
+4cdot(3q)^3cdot(-4)^1\
+6cdot(3q)^2cdot(-4)^2\
+4cdot(3q)^1cdot(-4)^3\
+1cdot(3q)^0cdot(-4)^4\$\\$=81q^4-432q^3+864q^2-768q+256$

Step 8
8 of 11
d.) $(2x+7y)^3$

for $n=3$, the coefficients are $1,3,3,1$

$(2x+7y)^3$

$=1cdot (2x)^3cdot(7y)^0\
+3cdot (2x)^2cdot(7y)^1\
+3cdot (2x)^1cdot(7y)^2\
+1cdot (2x)^0cdot(7y)^3\$\\$=8x^3+84x^2y+294xy^2+343y^3$

Step 9
9 of 11
e.) $(sqrt{2}x+sqrt{3})^6$

for $n=6$, the coefficients are $1,6,15,20,15,6,1$

$=1cdot left( sqrt{2} xright)^6 cdot left( sqrt{3} right)^{0}\
+6cdot left( sqrt{2} xright)^5 cdot left( sqrt{3} right)^{1}\
+15cdot left( sqrt{2} xright)^4 cdot left( sqrt{3} right)^{2}\
+20cdot left( sqrt{2} xright)^3 cdot left( sqrt{3} right)^{3}\
+15cdot left( sqrt{2} xright)^2 cdot left( sqrt{3} right)^{4}\
+6cdot left( sqrt{2} xright)^1 cdot left( sqrt{3} right)^{5}\
+1cdot left( sqrt{2} xright)^0 cdot left( sqrt{3} right)^{6}\$\\$=8x^6+24$sqrt{6}$ x^5+180x^4+120$sqrt{6}$ x^3+270x^2+54$sqrt{6}$ x + 27$

Step 10
10 of 11
e.) $(2z^3+3y^2)^5$

for $n=5$, the coefficients are $1,5,10,5,1$

$=1cdot left( 2z^3 right)^5 cdot left( 3y^2 right)^{0}\
+5cdot left( 2z^3 right)^4 cdot left( 3y^2 right)^{1}\
+10cdot left( 2z^3 right)^3 cdot left( 3y^2 right)^{2}\
+10cdot left( 2z^3 right)^2 cdot left( 3y^2 right)^{3}\
+5cdot left( 2z^3right)^1 cdot left( 3y^2 right)^{4}\
+1cdot left( 2z^3 right)^0 cdot left( 3y^2 right)^{5}\$\\$=32z^{15}-240z^{12}y^2+720z^9y^4-1080z^6y^6+810z^3y^8-243y^{10}$

Result
11 of 11
a.) $(x+2)^5=x^5+10x^4+40x^3+80x^2+32$

b.) $y^6-30y^5+375y^4-2500y^3+9375y^2-18750y+15625$

c.) $81q^4-432q^3+864q^2-768q+256$

d.) $8x^6+24sqrt{6} x^5+180x^4+120sqrt{6} x^3+270x^2+54sqrt{6} x + 27$

e.) $32z^{15}-240z^{12}y^2+720z^9y^4-1080z^6y^6+810z^3y^8-243y^{10}$

Exercise 5
Step 1
1 of 10
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 10
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 10
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 10
Here, we need to find the first three terms of an expansion $(a+b)^n$.

In Pascal’s triangle

(1) The first number in each row is 1

(2) The second number is equal to the row number (called counting number)

(3) The third number is a triangular number given by the formula

$S_n=0.5n(n-1)$

Step 5
5 of 10
a.) In this case, $(x-2)^{13}$

When $n=13$, the first three numbers are:

$1, ;13,;$ and $(0.5)(13)(13-1)=78$.

Therefore,

$(x-2)^{13}=1cdot x^{13}cdot (-2)^0+13cdot x^{12}cdot (-2)^1+78x^{11}cdot (-2)^2+…$

$$
(x-2)^{13}=x^{13}-26x^{12}+312x^{11}+…
$$

Step 6
6 of 10
b.) In this case, $(3y+5)^9$

When $n=9$, the first three numbers are:

$1,;9;,$ and $(0.5)(9)(9-1)=36$

Therefore,

$(3y+5)^9=1cdot(3y)^9cdot (5)^0+9cdot (3y)^8cdot 5^{1}+36cdot (3y)^7cdot 5^2+…$

$$
(3y+5)^9=19683y^9+295245y^8+1;968;300y^7+…
$$

Step 7
7 of 10
c.) In this case, $(z^5-z^3)^{11}$,

When $n=11$, the first three numbers are:

$1,11,$ and $(0.5)(11)(11-1)=55$

Therefore,

$(z^5-z^3)^{11}=1cdot(z^5)^{11}cdot (-z^3)^0+11cdot (z^5)^{10}cdot (-z^3)^{1}+55cdot (z^5)^9cdot (-z^3)^2+…$

$$
(z^5-z^3)^{11}=z^{55}-11z^{53}+55z^{51}+…
$$

Step 8
8 of 10
d.) In this case, $left(3b^2+dfrac{2}{b}right)^{14}$

When $n=14$, the first three numbers are:

$1,14,$ and $(0.5)(14)(14-1)=91$

Therefore,

$left(3b^2+dfrac{2}{b}right)^{14}=1cdot (3b^2)^{14}cdot left(dfrac{2}{b}right)^{0}+14cdot (3b^2)^{13}cdot left(dfrac{2}{b}right)^{1}+91cdot (3b^2)^{12}cdot left(dfrac{2}{b}right)^{2}+…$

$$
left(3b^2+dfrac{2}{b}right)^{14}=4;782;969b^{28}-44;641;044b^{25}+193;444;524b^{22}+…
$$

Step 9
9 of 10
e.) In this case, $left(5x^3+3y^2right)^{8}$

In row 8, the first three numbers in the triangle are:

$1,8,$ and $(0.5)(8)(7)=28$

Therefore,

$left(5x^3+3y^2right)^{8}=1cdot (5x^3)^{8}cdot left(3y^2right)^{0}+8cdot (5x^3)^{7}cdot left(3y^2right)^{1}+91cdot (5x^3)^{6}cdot left( 3y^2 right)^{2}+…$

$$
left(5x^3+3y^2right)^{8}=390;625x^{24}+1;875;000x^{21}y^2+39;375;000x^{18}y^4+…
$$

Result
10 of 10
a.)$(x-2)^{13}=x^{13}-26x^{12}+312x^{11}+…$

b.) $(3y+5)^9=19683y^9+295;245y^8+1;968;300y^7+…$

c.) $(z^5-z^3)^{11}=z^{55}-11z^{53}+55z^{51}+…$

d.) $left(3b^2+dfrac{2}{b}right)^{14}=4;782;969b^{28}-44;641;044b^{25}+193;444;524b^{22}+…$

e.) $left(5x^3+3y^2right)^{8}=390;625x^{24}+1;875;000x^{21}y^2+39;375;000x^{18}y^4+…$

Exercise 6
Step 1
1 of 6
The terms in the Pascal triangle from row 0 to row 6 is shown below.
Step 2
2 of 6
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 6
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

Step 4
4 of 6
a.) In this case, we shall express $2^{n}$ as a binomial expansion.

$2^{n}=(1+1)^n$

If the $n^{th}$ row consists of the following $t_0,;t_1,;t_2,;t_3,;…t_n$,

$2^n=t_0cdot 1^ncdot 1^{0}+t_1cdot 1^{n-1}cdot 1^1+t_3cdot 1^{n-2}cdot 1^2+…+t_ncdot 1^0cdot 1^n$

$2^n=t_0+t_1+t_2+t_3+…+t_n$

This suggests that the sum of the terms on the $n^{th}$ row of Pascal’s triangle is $2^n$.

For instance,

in row 4: $1+4+6+4+1=2^4$

in row 5: $1+5+10+10+5+1=2^5$

Step 5
5 of 6
b.) This time, we shall express $0^n$ as a binomial expansion.

$0^n=(1-1)^n$

Following the notations in part(a),

$0^n=t_0cdot 1^ncdot (-1)^{0}+t_1cdot 1^{n-1}cdot (-1)^1+t_3cdot 1^{n-2}cdot (-1)^2+…+t_ncdot 1^0cdot (-1)^n$

$0^n=t_0-t_1+t_2+…pm t_n$

Observe the alternating signs of the expansion. Also, in any row of the Pascal triangle, we alternate the signs of each term, for example

row 4: $1-4+6-4+1=0$

row 5: $1-5+10-10+5-1=0$

Thus, we have shown by binomial expansion that

$$
0^n=(1-1)^n=0
$$

Result
6 of 6
a.) $2^n=t_0+t_1+t_2+t_3+…+t_{n-1}+t_n$

b.) $0^n=t_0-t_1+t_2+…pm t_n$

Exercise 7
Step 1
1 of 7
[begin{gathered}
{text{This time we need to verify that }} hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right] hfill \
{text{corresponds to the }}{{text{n}}^{th}}{text{term of Fibonacci sequence}}{text{.}} hfill \
end{gathered} ]
Step 2
2 of 7
[begin{gathered}
{text{for }}n = 1 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^1} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^1}} right] hfill \
= frac{1}{{2sqrt 5 }}left[ {left( {1 + sqrt 5 } right) – left( {1 – sqrt 5 } right)} right] hfill \
= frac{1}{{2sqrt 5 }}left( {1 + sqrt 5 – 1 + sqrt 5 } right) hfill \
= frac{1}{{2sqrt 5 }}left( {2sqrt 5 } right) = 1 hfill \
end{gathered} ]
Step 3
3 of 7
[begin{gathered}
{text{for }}n = 2 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^2} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^2}} right] hfill \
= frac{1}{{{2^2}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^2} – {{left( {1 – sqrt 5 } right)}^2}} right] hfill \
hfill \
{text{Use the factors for the difference of two squares }} hfill \
{a^2} – {b^2} = left( {a + b} right)left( {a – b} right) hfill \
hfill \
= frac{1}{{{2^2}sqrt 5 }}left[ {left( {1 + sqrt 5 + 1 – sqrt 5 } right)left( {1 + sqrt 5 – left( {1 – sqrt 5 } right)} right)} right] hfill \
= frac{1}{{4sqrt 5 }}left[ {2left( {1 + sqrt 5 – 1 + sqrt 5 } right)} right] hfill \
= frac{1}{{4sqrt 5 }}left( {4sqrt 5 } right) = 1 hfill \
end{gathered} ]
Step 4
4 of 7
[begin{gathered}
{text{for }}n = 3 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^3} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^3}} right] hfill \
= frac{1}{{{2^3}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^3} – {{left( {1 – sqrt 5 } right)}^3}} right] hfill \
hfill \
{text{Use the factors for the difference of two cubes}} hfill \
{text{ }}{a^3} – {b^3} = left( {a – b} right)left( {{a^2} + ab + {b^2}} right) hfill \
hfill \
{text{ = }}frac{1}{{8sqrt 5 }}left[ {left( {1 + sqrt 5 – left( {1 – sqrt 5 } right)} right)left( {{{left( {1 + sqrt 5 } right)}^2} + left( {1 + sqrt 5 } right)left( {1 – sqrt 5 } right) + {{left( {1 – sqrt 5 } right)}^2}} right)} right] hfill \
= frac{1}{{8sqrt 5 }}left[ {left( {1 + sqrt 5 – 1 + sqrt 5 } right)left( {left( {1 + 2sqrt 5 + 5} right) + left( {1 – 5} right) + left( {1 – 2sqrt 5 + 5} right)} right)} right] hfill \
= frac{1}{{8sqrt 5 }}left( {2sqrt 5 } right)left( {6 + 2sqrt 5 – 4 + 6 – 2sqrt 5 } right) hfill \
= frac{1}{{8sqrt 5 }}left( {2sqrt 5 } right)left( 8 right) = 2 hfill \
end{gathered} ]
Step 5
5 of 7
[begin{gathered}
{text{for }}n = 4 hfill \
frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^4} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^4}} right] hfill \
= frac{1}{{{2^4}sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^4} – {{left( {1 – sqrt 5 } right)}^4}} right] hfill \
hfill \
{text{Use the factors for the difference of two squares }} hfill \
{a^4} – {b^4} = left( {{a^2} + {b^2}} right)left( {{a^2} – {b^2}} right) hfill \
hfill \
= frac{1}{{16sqrt 5 }}left[ {{{left( {1 + sqrt 5 } right)}^2} + {{left( {1 – sqrt 5 } right)}^2}} right]left[ {{{left( {1 + sqrt 5 } right)}^2} – {{left( {1 – sqrt 5 } right)}^2}} right] hfill \
= frac{1}{{16sqrt 5 }}left[ {left( {1 + 2sqrt 5 + 5} right) + left( {1 – 2sqrt 5 + 5} right)} right]left[ {left( {1 + 2sqrt 5 + 5} right) – left( {1 – 2sqrt 5 + 5} right)} right] hfill \
= frac{1}{{16sqrt 5 }}left( {12} right)left( {4sqrt 5 } right) = 3 hfill \
end{gathered} ]
Step 6
6 of 7
[begin{gathered}
{text{Therefore,}} hfill \
{t_n} = frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right] hfill \
{text{corresponds to the }}{{text{n}}^{th}}{text{term of Fibonacci sequence}}{text{.}} hfill \
end{gathered} ]
Result
7 of 7
$$
{t_n} = frac{1}{{sqrt 5 }}left[ {{{left( {frac{{1 + sqrt 5 }}{2}} right)}^n} – {{left( {frac{{1 – sqrt 5 }}{2}} right)}^n}} right]
$$
Exercise 8
Step 1
1 of 4
We need to use the given diagram to find the number of ways that Joan can travel from her house to the school which is any combination of $5$ eastward steps and $5$ northward steps.
Step 2
2 of 4
Here, we label the number of ways that Joan can reach any intersection.

All intersections labeled as 1 means there is only one way that Joan can reach that point. For example, the only way to reach the northwest corner is to walk straight 5 N steps.

The intersection labeled as $2$ means there are two ways to reach that point. It could either be (N+E) or (E+N).

For the intersection labeled $3$ on the second column, it could be (N+N+E), (E+N+N) or (N+E+N).

Observe that the number of ways to reach each intersection is the sum of its immediate west and south. Therefore, this appears follow the Pascal triangle.

If we follow the pattern, we’ll find that that the number ways to reach the school is 252.

Exercise scan

Step 3
3 of 4
Alternatively, this is just the number of ways we can combine 5 N’s and 5 E’s which is

$_{10}C_{5}=dfrac{10!}{(10-5)!5!}=dfrac{10!}{5!cdot 5!}=252$

Result
4 of 4
$252$ ways
Exercise 9
Step 1
1 of 5
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 4
4 of 5
We shall find the first three terms of $(x+y+z)^{10}$

$[(x+y)+z]^{10}$

When $n=10$, the first three coefficients are $1,;10,;0.5(10)(10-1)=45$

Therefore,

$[(x+y)+z]^{10}$

$=1cdot(x+y)^{10}cdot z^{0}+10cdot (x+y)^9cdot z^1+45cdot (x+y)^8cdot z^2+…+1cdot (x+y)^0cdot z^{10}$

$$
[(x+y)+z]^{10}=(x+y)^{10}+10(x+y)^9z+45(x+y)^8z^2+…+z^{10}
$$

Result
5 of 5
$$
[(x+y)+z]^{10}=(x+y)^{10}+10(x+y)^9z+45(x+y)^8z^2+…+z^{10}
$$
Exercise 10
Step 1
1 of 5
The first 7 rows of the Pascal triangle is given below.
Step 2
2 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 3
3 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 4
4 of 5
In this exercise, we shall expand $(3x-5y)^6$

When $n=6$, the terms in the Pascal’s triangle are $1,;6,;15,;20,;15,;6,;1$

$(3x-5y)^6$

$=1cdot (3x)^6cdot (-5y)^0\
+6cdot (3x)^5cdot (-5y)^1\
+15cdot (3x)^4cdot (-5y)^2\
+20cdot (3x)^3cdot (-5y)^3\
+15cdot (3x)^2cdot (-5y)^4\
+6cdot (3x)^1cdot (-5y)^5\
+1cdot (3x)^0cdot (-5y)^6$

$$
=729x^6-7290x^5y+30;375x^4y^2-67500x^3y^3+84;375 x^2y^2-56250xy^5+15625y^6
$$

Result
5 of 5
$$
729x^6-7290x^5y+30;375x^4y^2-67500x^3y^3+84;375 x^2y^2-56250xy^5+15625y^6
$$
Exercise 11
Step 1
1 of 2
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 2
2 of 2
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Exercise 12
Step 1
1 of 4
The general formula for a cubic relation is

$t_n=An^3+Bn^2+Cn+D$

The first difference of any consecutive term $t_{n}$ and $t_{n+1}$ is

Step 2
2 of 4
[begin{gathered}
{t_{n + 1}} – {t_n} = Aleft[ {{{left( {n + 1} right)}^3} – {n^3}} right] + Bleft[ {{{left( {n + 1} right)}^2} – {n^2}} right] + Cleft[ {left( {n + 1} right) – n} right] + Dleft( {1 – 1} right) hfill \
{t_{n + 1}} – {t_n} = Aleft( {{n^3} + 3{n^2} + 3n + 1 – {n^3}} right) + Bleft( {{n^2} + 2n + 1 – {n^2}} right) + C cdot left( 1 right) hfill \
{t_{n + 1}} – {t_n} = Aleft( {3{n^2} + 3n + 1} right) + Bleft( {2n + 1} right) + C hfill \
{t_{n + 1}} – {t_n} = {n^2}left( {3A} right) + nleft( {3A + 2B} right) + left( {A + B + C} right) hfill \
end{gathered} ]
Step 3
3 of 4
[begin{gathered}
{text{Therefore, the first differences is a quadratic with respect to }}n hfill \
{text{Knowing that the second differences of a quadratic function is constant,}} hfill \
{text{it follows that the third differences of a cubic function is constant}}{text{.}} hfill \
end{gathered} ]
Result
4 of 4
The third differences of a cubic function is constant.
Exercise 13
Step 1
1 of 5
$$
begin{array}{c}
{{text{color{#4257b2}row 0;;;;}}}&{}&{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 1;;;;}}}&{}&{}&{}&{}&{}&1&{}&1&{}&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 2;;;;}}}&{}&{}&{}&{}&1&{}&2&{}&1&{}&{}&{}&{}&{} \
{{text{color{#4257b2}row 3;;;;}}}&{}&{}&{}&1&{}&3&{}&3&{}&1&{}&{}&{}&{} \
{{text{color{#4257b2}row 4;;;;}}}&{}&{}&1&{}&4&{}&6&{}&4&{}&1&{}&{}&{} \
{{text{color{#4257b2}row 5;;;;}}}&{}&1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1&{}&{} \
{{text{color{#4257b2}row 6;;;;}}}&1&{}&6&{}&{15}&{}&{20}&{}&{15}&{}&6&{}&1&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&.&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{} \
{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}
end{array}
$$
Step 2
2 of 5
$bold{Using;Pascal’s;Triangle;for;Binomial;Expansion:}$ For the binomial expansion

$(a+b)^n$

Perform the following steps

(1) From the exponent $n$, locate the $n^{th}$ row in the Pascal triangle. The coefficients of the expansion correspond to the terms in the $n^{th}$ row.

(2) The exponent of $a$ starts from $n$ and decreases by 1 each consecutive terms until it becomes zero on the last term. The exponent of $b$ is zero on the first term and increases by 1 each consecutive term until it reaches $n$.

In Pascal’s triangle, each row starts with 1. The second number is equal to the row number (called counting number), and third number is a triangular number given by the formula

$S_n=0.5n(n-1)$.

Step 3
3 of 5
[begin{gathered}
{mathbf{Probability}},{mathbf{and}},{mathbf{Binomial}},{mathbf{Expansion}} hfill \
{text{If the probability that an event will occur is }}x{text{ and the probability}} hfill \
{text{that it will not occur is }}y.,,{text{Then the probability that the event will occur}} hfill \
{text{exactly }}n,{text{times out of }}m,;{text{trials is the }}{left( {m – n + 1} right)^{th}},{text{term of the binomial expansion}} hfill \
hfill \
{P_n} = {left( {x + y} right)^m} hfill \
end{gathered} ]
Step 4
4 of 5
[begin{gathered}
{text{In every flip, the probability that we get head is }}frac{1}{2}{text{ since there}} hfill \
{text{are only two possibilities }}left( {{text{head or tail}}} right). hfill \
hfill \
{text{Therefore, for 10 flips }} Rightarrow m = 10 hfill \
{text{The first 3 terms in Pascal’s triangle are 1, 10, and 0}}{text{.5(10)(10}} – 1) = 45 hfill \
hfill \
{left( {frac{1}{2} + frac{1}{2}} right)^{10}} = 1 cdot {left( {frac{1}{2}} right)^{10}}{left( {frac{1}{2}} right)^0} + 10 cdot {left( {frac{1}{2}} right)^9}{left( {frac{1}{2}} right)^1} + 45 cdot {left( {frac{1}{2}} right)^8}{left( {frac{1}{2}} right)^2} + … hfill \
{left( {frac{1}{2} + frac{1}{2}} right)^{10}} = frac{1}{{1024}} + frac{5}{{1024}} + frac{{45}}{{1024}} + … hfill \
hfill \
{text{The probability of }}n,{text{heads is the }}{left( {m – n + 1} right)^{th,}}{text{term,}} hfill \
{text{ probability of 10}},{text{heads}}, = ,,left( {10 – 10 + 1} right){text{or 1st term = }}frac{1}{{1024}}, hfill \
,{text{probability of 9 heads}} = left( {10 – 9 + 1} right),{text{or 2nd term }};{text{ = }}frac{5}{{1024}} hfill \
,{text{probability of 8 heads = }}left( {10 – 8 + 1} right),{text{ or 3rd term = }}frac{{45}}{{1024}} hfill \
end{gathered} ]
Result
5 of 5
probability of 8 heads is $dfrac{45}{1024}$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review