All Solutions
Page 414: Getting Started
$m = -dfrac{2}{5}$
$b = 8$
Using the slope-intercept form
$$
y= -dfrac{2}{5}x+8
$$
$y=mx+b$
where
$m$ = slope
$b$ = y-intercept
$m=-9$
point on the line = $(5,4)$
Using the point-slope form,
$y=-9(x-5)+4$
$y=-9x-45+4$
$$
y=-9x+49
$$
$y=m(x-x_1)+y_1$
where
$m = slope$
$(x_1,y_1)$ = any point on the line
$(5,0)$ and $(0,-7)$
$m=dfrac{-7-0}{0-5}=dfrac{7}{5}$
The point-slope form is written as
$y=m(x-x_1)+y_1$
$y=dfrac{7}{5}(x-5)+0$
$$
y=dfrac{7}{5}x-7
$$
$$
m=dfrac{y_2-y_1}{x_2-x_1}
$$
$(-12,17)$ and $(5,-17)$
$m=dfrac{-17-17}{5-(-12)}=-dfrac{34}{17}=-2$
Thus, the point-slope form is
$y=-2(x+12)+17$
$y=-2x-24+17$
$$
y=-2x-7
$$
b.) $y=-9x+49$
c.) $y=dfrac{7}{5}x-7$
d.) $y=-2x-7$
$g(-2)=3(-2)+(-2)-4$
$$
g(-2)=6
$$
to evaluate the function at $x=a$,
simply substitute the value of $a$ to x.
$fleft(dfrac{3}{4}right)=dfrac{4}{5}cdot dfrac{3}{4}+dfrac{7}{10}$
$fleft(dfrac{3}{4}right)=dfrac{3}{5}+dfrac{7}{10}$
$$
fleft(dfrac{3}{4}right)=dfrac{13}{10}
$$
Remember that
$$
dfrac{a}{b}cdot dfrac{c}{a}=dfrac{c}{b}
$$
$g(sqrt{6})=4(sqrt{6})^2-24$
$g(sqrt{6})=4(6)-24$
$$
g(sqrt{6})=0
$$
$hleft(dfrac{1}{3}right)=64^{1/3}$
$hleft(dfrac{1}{3}right)=(4^3)^{1/3}$
$$
hleft(dfrac{1}{3}right)=4
$$
$$
(a^b)^{1/b}=a
$$
b.) $dfrac{13}{10}$
c.) 0
d.) 4
(1) If the 1st differences are constant, the relation is $bold{linear}$.
(2) If the 1st differences are not constant, but the 2nd differences are constant, then it is $bold{quadratic}$.
(3) If neither of the above statement is true, then it is $bold{neither; linear; nor; quadratic}$.
Thus, it is $bold{linear}$.
$therefore$ not linear
The second differences are:
$12-6=6$
$24-12=12$
$48-24=24$
$therefore$ not quadratic
Thus, the relation is $bold{neither;linear;nor;quadratic}$.
$therefore$ not linear
The second differences are
$6-2=4$
$10-6=4$
$14-10=4$
$therefore$ quadratic
Thus, the relation is $bold{quadratic}$.
b.) neither linear nor quadratic
c.) quadratic
$2x=7+3$
$2x=10$
$dfrac{2x}{2}=dfrac{10}{2}$
$$
x=5
$$
Remember that
$$
ax=bimplies x=dfrac{b}{a}
$$
$5x-2x=-7-8$
$3x=-15$
$dfrac{3x}{3}=dfrac{-15}{3}$
$$
x=-5
$$
$5(3x-2)+7x-4=2(4x+8)-2x+3$
$15x-10+7x-4=8x+16-2x+3$
$22x-14=6x+19$
$22x-6x=19+14$
$16x=33$
$dfrac{16x}{16}=dfrac{33}{16}$
$$
x=dfrac{33}{16}
$$
$$
a(x+c)=ax+ac
$$
$-8x+dfrac{3}{4}=dfrac{1}{3}x-12$
$-8x-dfrac{1}{3}x=-12-dfrac{3}{4}$
$-dfrac{25}{3}x=-dfrac{51}{4}$
$x=-dfrac{3}{25}cdot dfrac{-51}{4}$
$$
x=dfrac{153}{100}
$$
$$
dfrac{a}{b}x=cimplies x=dfrac{b}{a}cdot c
$$
b.) $x=-5$
c.) $x=dfrac{33}{16}$
d.) $x=dfrac{153}{100}$
$$
M(t)=M_0left(dfrac{1}{2}right)^{t/t_{1/2}}
$$
$M(1000)=2.3left(dfrac{1}{2}right)^{1000/10}$
$M(1000)=2.3left(dfrac{1}{2}right)^{10}=dfrac{2.3}{1024}=0.022$ kg
$$
M(t)=M_0left( 2 right)^{t/t_{2}}
$$
$M(9)=0.1left(2right)^{9/1}$
$$
M(9)=0.512=51.2%
$$
51.2%
$$
Exponential function is a function such that the independent variable is in the exponent which can be written in the form
$y=acdot b^{(ccdot x)}$
where $a,;b,$ and $c$ are constants.
For an exponential function $y=acdot b^{ccdot x}$
domain: $bold{R}$
range:
if $a>0$, ${ yin bold{R};|;y>0}$
if $a<0$ , ${ yinbold{R};|;y<0}$
$y$-intercept: $(0,a)$
$y=2^x$
$f(x)=0.5^{3x}$
$$
g(t)=dfrac{1}{3^{0.4t}}
$$
$y=xcdot 3^x$
$y=dfrac{2^x}{x^2}$
$y=2x+3$
$y=x^2+2x+1$