All Solutions
Page 408: Cumulative Review
$(a^m)^n=a^{mn}$
$a^n=dfrac{1}{a^n}$
$=(5^2)^{1/2}+(2^4)^{3/4}$
$=5+2^3$
$=5+8$
$$
=13
$$
$25=5^2$
$$
16=2^4
$$
$=(2^3)^{2/3}-(3^4)^{3/4}+4^2$
$=2^2-3^3+4^2$
$$
=-7
$$
$8=2^3$
$$
81=3^4
$$
$=(2^3)^{-3/4}-(3^4)^{-3/4}+8^{-3}$
$=2^{-9/4}-3^{-3}+8^{-3}$
$$
approx 0.175
$$
$8=2^3$
$$
81=3^4
$$
$=(3^4)^{-3/4}+(2^4)^{-3/4}-(4^2)^{-1/2}$
$=3^{-3}+2^{-3}-4^{-1}$
$$
approx -0.0879
$$
$81=3^4$
$16=2^4=4^2$
a) $3^{2x-1}=3^{2(2)-1}=3^{3}=27$
The statement is TRUE.
The statement is FALSE.
The statement is FALSE.
The statement is TRUE.
a) left( {{a^{10 + 2p}}} right)left( {{a^{ – p – 8}}} right) hfill \\
= {a^{left( {10 + 2p} right) – left( { – p – 8} right)}} hfill \\
= {a^{10 + 2p + p + 8}} hfill \\
= {a^{3p + 18}} hfill \\
end{gathered} ]
$$
a^m times a^n=a^{m+n}
$$
b) {left( {2{x^2}} right)^{3 – 2m}}{left( {frac{1}{x}} right)^{2m}} hfill \\
= {left( {2{x^2}} right)^{3 – 2m}}{x^{ – 2m}} hfill \\
= {2^{3 – 2m}} cdot {x^{2left( {3 – 2m} right)}} cdot {x^{ – 2m}} hfill \\
= {2^{3 – 2m}} cdot {x^{6 – 4m}} cdot {x^{ – 2m}} hfill \\
= {2^{3 – 2m}} cdot {x^{6 – 4m – 2m}} hfill \\
= {2^{3 – 2m}} cdot {x^{6 – 6m}} hfill \\
end{gathered} ]
$$
dfrac{a^m}{a^n}=a^{m-n}
$$
c) left[ {{{left( c right)}^{2n – 3m}}} right]{left( {{c^3}} right)^m} div {left( {{c^2}} right)^n} hfill \
hfill \
= frac{{left[ {{{left( c right)}^{2n – 3m}}} right]{{left( {{c^3}} right)}^m}}}{{{{left( {{c^2}} right)}^n}}} hfill \
hfill \
= frac{{{c^{2n – 3m}} cdot {c^{3m}}}}{{{c^{2n}}}} hfill \
hfill \
= {c^{2n – 3m}} cdot {c^{3m}} cdot {c^{ – 2n}} hfill \
hfill \
= {c^{2n – 2n – 3m + 3m}} hfill \
hfill \
= {c^0} hfill \
hfill \
= 1 hfill \
end{gathered} ]
$$
dfrac{a^m}{a^n}=a^{m-n}
$$
d) {left[ {left( {{x^{4n – m}}} right)left( {frac{1}{x}} right)} right]^6} hfill \
hfill \
= {x^{4n – m}} cdot {x^{ – 6}} hfill \
hfill \
= {x^{4n – m – 6}} hfill \
end{gathered} ]
$$
dfrac{a^m}{a^n}=a^{m-n}
$$
$A=P(1.05)^t$
where
$P =$ population in the year 2000
$A$ = the population after $t$ years
At $t=20$
$$
A=15,000(1.05)^{20}=40,000
$$
The terminal point is $(-7,24)$ at Quadrant II
We can solve $r$ using Pythagorean relation $c^2=a^2+b^2$
$r=sqrt{(-7)^2+24^2}=25$
Substituting the value of $r$
$sin alpha =dfrac{24}{25} implies alpha= sin^{-1}left(dfrac{24}{25}right)approx 74^circ$
The acute angle is $74^circ$
The principal angle is $theta=180-74=106^circ$
defarraystretch{2.5}%
begin{tabular}{llll}
hline
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}Principal \ Angle $theta$end{tabular}} & multicolumn{1}{l|}{Quadrant} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}Sign of\ Coordinatesend{tabular}} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}Reference\ Acute angleend{tabular}} \ hline
multicolumn{1}{|l|}{$0^circ < theta< 90^circ$} & multicolumn{1}{l|}{I} & multicolumn{1}{l|}{$(+,+)$} & multicolumn{1}{l|}{$theta$} \ hline
multicolumn{1}{|l|}{$90^circ < theta <180^circ$} & multicolumn{1}{l|}{II} & multicolumn{1}{l|}{$(-,+)$} & multicolumn{1}{l|}{$180^circ-theta$} \ hline
multicolumn{1}{|l|}{$180^circ< theta < 270^circ$} & multicolumn{1}{l|}{III} & multicolumn{1}{l|}{$(-,-)$} & multicolumn{1}{l|}{$theta-180^circ$} \ hline
multicolumn{1}{|l|}{$270^circ< theta < 360^circ$} & multicolumn{1}{l|}{IV} & multicolumn{1}{l|}{$(+,-)$} & multicolumn{1}{l|}{$360^circ-theta$} \ hline
& & & \ cline{1-3}
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}Reference\ Acute angleend{tabular}} & multicolumn{1}{l|}{cosine} & multicolumn{1}{l|}{sine} & \ cline{1-3}
multicolumn{1}{|l|}{30$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{45$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{60$^circ$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & \ cline{1-3}
& & &
end{tabular}
end{table}
Determine which quadrant does $300^circ$ lie to obtain reference angle.
From the table above, $300^circ$ lies in QIV where the reference acute angle is
$360^circ-300^circ=60^circ$
At quadrant IV, $sin theta < 0$, thus
$sin 300^circ=-sin 60^circ= -dfrac{sqrt{3}}{2}$
Using the identity $csc theta =dfrac{1}{sin theta}$
$$
csc 300^circ =dfrac{1}{-sqrt{3}/2}=-dfrac{2}{sqrt{3}}=-dfrac{2sqrt{3}}{3}
$$
{mathbf{a)}} hfill \
hfill \
left( {1 – {{tan }^2}theta } right)left( {1 – {{cos }^2}theta } right) hfill \
= left( {1 – frac{{{{sin }^2}theta }}{{{{cos }^2}theta }}} right)left( {{{sin }^2}theta } right) hfill \
= frac{{{{sin }^2}theta – {{sin }^4}theta }}{{{{cos }^2}theta }} hfill \
= frac{{{{sin }^2}theta – {{sin }^4}theta }}{{{{cos }^2}theta }} hfill \
= frac{{{{sin }^2}theta – {{sin }^4}theta }}{{1 – {{sin }^2}theta }} hfill \
hfill \
{text{The equation is an identity}}{text{.}} hfill \
end{gathered} ]
{text{Use the following identities}} hfill \
hfill \
{text{tan}}theta = frac{{sin theta }}{{cos theta }}{text{ }} hfill \
hfill \
{text{ si}}{{text{n}}^2}theta + {cos ^2}theta = 1 hfill \
end{gathered} ]
$tan x+sin xneq tan x sin x$
for some value of $x$,
For example, when $x=45^circ$
$tan x+sin x=1+dfrac{sqrt{2}}{2}$
$tan x sin x =dfrac{sqrt{2}}{2}$
Thus, this is NOT an identity.
{mathbf{c}}) hfill \
= 1 – tan theta hfill \
= 1 – frac{{sin theta }}{{cos theta }} hfill \
= frac{{cos theta – sin theta }}{{cos theta }} cdot frac{{cos theta + sin theta }}{{cos theta + sin theta }} hfill \
= frac{{{{cos }^2}theta – {{sin }^2}theta }}{{{{cos }^2}theta + sin theta cos theta }} hfill \
end{gathered} ]
$$
tan theta=dfrac{sintheta}{costheta}
$$
{mathbf{d}}) hfill \
hfill \
frac{{left( {frac{{1 – cos x}}{{cos x}}} right)}}{{tan x}} hfill \
= left( {frac{{1 – cos x}}{{cos x}}} right)left( {frac{{cos x}}{{sin x}}} right) hfill \
= frac{{1 – cos x}}{{sin x}} hfill \
end{gathered} ]
$$
tan theta=dfrac{sintheta}{costheta}
$$
$theta = 63^circ$
opposite side = $12$
adjacent side = $x$
$tan 63^circ=dfrac{12}{x}$
$$
x=dfrac{12}{tan 63^circ}approx 6
$$
$$
tan theta =dfrac{text{opposite;side}}{text{adjacent side}}
$$
$x=dfrac{12sin 27^circ}{sin 63^circ}approx 6$
In both methods, the answer is option (c)
The sum of the angles in a triangle is always $180^circ$, so the other acute angle must be $180-90-63=27^circ$
The formula is
$$
dfrac{sin alpha}{A}=dfrac{sin beta}{B}=dfrac{sin gamma}{C}
$$
and hypotenuse is given,
so we must use sine function.
opposite side = $7$
hypotenuse = $22$
$sin theta = dfrac{7}{22}$
$theta=sin^{-1}left(dfrac{7}{22}right)$
$theta approx 19^circ$
The answer is option (a)
$sin theta =dfrac{text{opposite;side}}{text{hypotenuse}}$
$cos theta= dfrac{text{adjacent;side}}{text{hypotenuse}}$
$$
tan theta= dfrac{text{opposite side}}{text{adjacent side}}
$$
Since we want to know $csc theta = dfrac{1}{sin theta}$,
we need to solve for the opposite side, which can be done using Pythagorean relation.
$c^2=a^2+b^2$
opposite side = $sqrt{13^2-5^2}=12$
Therefore,
$csc theta = dfrac{1}{sin theta}=dfrac{1}{(12/13)}=dfrac{13}{12}$
The answer is option (c)
$sin theta =dfrac{text{opposite;side}}{text{hypotenuse}}$
$cos theta= dfrac{text{adjacent;side}}{text{hypotenuse}}$
$$
tan theta= dfrac{text{opposite side}}{text{adjacent side}}
$$
$sec^2theta=tan^2theta+1$
$sectheta=sqrt{tan^2theta+1}$
$sec theta=sqrt{left(dfrac{4}{3}right)^2+1}$
$sec theta=dfrac{5}{3}$
Since $costheta=dfrac{1}{sectheta}=dfrac{1}{5/3}=dfrac{3}{5}$
In quadrant III, $costheta<0$, therefore
$cos theta=-dfrac{3}{5}$
The answer is option (b)
{text{Remember that}} hfill \
sin theta = frac{{{text{opposite side}}}}{{{text{hypotenuse}}}} hfill \
cos theta = frac{{{text{adjacent side}}}}{{{text{hypotenuse}}}} hfill \
{text{tan}}theta = frac{{{text{opposite side}}}}{{{text{adjacent side}}}} hfill \
end{gathered} ]
tan {57^ circ } = frac{y}{{15 + x}} hfill \
tan {83^ circ } = frac{y}{x} Rightarrow x = frac{y}{{tan {{83}^ circ }}} hfill \
hfill \
{text{Substitute }}x{text{ to the first equation}} hfill \
hfill \
tan {57^ circ } = frac{y}{{15 + x}} hfill \
tan {57^ circ } = frac{y}{{15 + left( {frac{y}{{tan {{83}^ circ }}}} right)}} hfill \
1.54 = frac{y}{{15 + 0.123y}} hfill \
1.54left( {15 + 0.123y} right) = y hfill \
23.1 + 0.1894y = y hfill \
hfill \
y = frac{{23.1}}{{1 – 0.1894}} = boxed{28.5{text{ km}}} hfill \
hfill \
{text{option (a)}} hfill \
end{gathered} ]
{text{Remember that}} hfill \
sin theta = frac{{{text{opposite side}}}}{{{text{hypotenuse}}}} hfill \
cos theta = frac{{{text{adjacent side}}}}{{{text{hypotenuse}}}} hfill \
{text{tan}}theta = frac{{{text{opposite side}}}}{{{text{adjacent side}}}} hfill \
end{gathered} ]
{text{In this case,}} hfill \
theta = {35^ circ } hfill \
{text{opposite side = 12m}} hfill \
{text{adjacent side = }}x hfill \
hfill \
sin theta = frac{{12}}{x} hfill \
x = frac{{12}}{{sin {{35}^ circ }}} = boxed{20.9{text{ m}}} hfill \
hfill \
{text{The answer is option (a)}} hfill \
end{gathered} ]
begin{gathered}
{text{Remember the formula for sine law}} \
\
frac{{sin alpha }}{a} = frac{{sin beta }}{b} = frac{{sin gamma }}{c} \
end{gathered}
$$
frac{{sin {{32}^{text{o}}}}}{{24.1}} = frac{{sin {text{8}}{{text{1}}^{text{o}}}}}{{AB}} Rightarrow AB = frac{{24.1sin {{81}^{text{o}}}}}{{sin {{32}^{text{o}}}}} approx 44.9 hfill \
hfill \
angle B = 180 – left( {32 + 81} right) = {67^{text{o}}} hfill \
hfill \
frac{{sin {{67}^{text{o}}}}}{{AC}} = frac{{sin {{32}^{text{o}}}}}{{24.1}} Rightarrow AC = frac{{24.1sin {{67}^{text{o}}}}}{{sin {{32}^{text{o}}}}} = 41.9 hfill \
hfill \
{text{Therefore, the answer is option }}left( {text{d}} right) hfill \
end{gathered} ]
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
From the given options, the only one that satisfies this is option (d)
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
The range is given so we can obtain the axis halfway between the minimum and maximum,
$y=dfrac{2+12}{2}=7$
From the given options, only option (c) satisfies this.
The woman’s coordinate after $18$ minutes, is
$(x,y)implies (20cos(7.5times 18)^circ,20sin(7.5times 18)^circ)=(-10sqrt{2}.10sqrt{2})$
$sin alpha = dfrac{10sqrt{2}}{20}implies alpha =sin^{-1}left( dfrac{10sqrt{2}}{20}right)=45^circ$
$$
theta=180-45=135^circ
$$
$c^2=a^2+b^2-2abcostheta$
$x^2=20^2+20^2-2(20)(20)cos 135^circ$
$x=sqrt{20^2+20^2-2(20)(20)cos 135^circ}approx 37$
The answer is option (b)
a) The period of any sine function $y=Asin[k(x-d)]+c$ is $T=dfrac{360}{|k|}$. Since $k=1$ in this case, its period is $360^circ$ so the statement is TRUE.
b) The amplitude of any sine function $y=Asin[k(x-d)]+c$ is $T=dfrac{360}{|k|}$. Since $A=1$, the amplitude is 1 and the statement is true.
c) The equation of axis of any sine function $y=Asin[k(x-d)]+c$ is $y=c$. Since $c=0$, the statement is true.
d) The range of any sine function $y=Asin[k(x-d)]+c$ is
${ y in bold{R};|;c-|A|leq y leq c+|A|}$.
Thus, the range of $y=sin x$ is ${ y in bold{R};|;-1leq y leq 1}$, so the statement is FALSE.
To find the perimeter of the regular octagon, we must find the length of each side and multiply by 8.
The angle is $theta =dfrac{360}{8}=45^circ$
The length of each side is denoted as $x$ in the figure which can be solved by cosine law.
$x=sqrt{14^2+14^2-2(14)(14)cos 45^circ}approx 10.715$
Perimeter $=8times 10.715=85.72$ cm
The answer is option (c)
{text{The sum of the angles in a triangle must always be 18}}{{text{0}}^{text{o}}} hfill \
{text{Since one angle is 8}}{{text{5}}^{text{o}}},{text{ the sum of the other angles must be 9}}{{text{5}}^{text{o}}} hfill \
{text{Let }}angle {text{C}} = theta {text{, }}angle {text{C}} = {95^{text{o}}} – theta hfill \
{text{Remember that sin}}theta = frac{{{text{opposite side}}}}{{{text{hypotenuse}}}} hfill \
{text{sin}}theta {text{ = }}frac{x}{{15}}{text{ ; sin}}left( {{{95}^{text{o}}} – theta } right){text{ = }}frac{x}{{10}} hfill \
{text{ }} hfill \
{text{Equate }}x hfill \
x = 15sin theta = 10sin left( {{{95}^{text{o}}} – theta } right) hfill \
{text{We shall solve this graphically}} hfill \
end{gathered} ]
$x=15sin(35.188)approx 8.64$
The answer is option (b)
(1) Determine which quadrant does the terminal point lie using the table below. If the given angle $beta$ is outside $0leq thetaleq 360^circ$, find a coterminal angle $theta$ within this range using the formula
coterminal angle = $beta+360^circ n$ where $n$ is an integer.
(2) Calculate the reference acute angle based on its quadrant.
(3) Find the absolute value of sine or cosine based on the reference angle as shown in the table.
(4) Change the sign of the sine or cosine based on its quadrant.
(5) Use the identities to find the value of other trigonometric functions.
$tan = dfrac{sin theta}{cos theta}$
$sec theta = dfrac{1}{cos theta}$
$csc theta = dfrac{1}{sin theta}$
$cot theta=dfrac{1}{cottheta}$
center
defarraystretch{2.4}%
begin{tabular}{llll}
hline
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}principal angle;$theta$end{tabular}} & multicolumn{1}{l|}{Quadrant} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}sign $(cos theta, sin theta)$end{tabular}} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $alpha$end{tabular}} \ hline
multicolumn{1}{|l|}{$0< theta<90^circ$} & multicolumn{1}{l|}{I} & multicolumn{1}{l|}{$(+,+)$} & multicolumn{1}{l|}{$theta$} \ hline
multicolumn{1}{|l|}{$90^circ <theta < 180^circ$} & multicolumn{1}{l|}{II} & multicolumn{1}{l|}{$(-,+)$} & multicolumn{1}{l|}{$180^circ-theta$} \ hline
multicolumn{1}{|l|}{$180^circ <theta < 270^circ$} & multicolumn{1}{l|}{III} & multicolumn{1}{l|}{$(-,-)$} & multicolumn{1}{l|}{$theta-180^circ$} \ hline
multicolumn{1}{|l|}{$270^circ < theta <360^circ$} & multicolumn{1}{l|}{IV} & multicolumn{1}{l|}{$(+,-)$} & multicolumn{1}{l|}{$360^circ-theta$} \ hline
& & & \ cline{1-3}
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $alpha$ end{tabular}} & multicolumn{1}{l|}{$cos alpha$} & multicolumn{1}{l|}{$sin alpha$} & \ cline{1-3}
multicolumn{1}{|l|}{30$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{45$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{60$^circ$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & \ cline{1-3}
& & &
end{tabular}
end{table}
coterminal angle = $-420+360(2)=300^circ$
$300^circ$ lies within $270^circ < theta 0$ in QIV, $cos(-420^circ)=dfrac{1}{2}$
frac{{{text{si}}{{text{n}}^2}theta + {{cos }^2}theta }}{{left( {frac{{cos theta }}{{sin theta }}} right)}} = left( {{{sin }^2}theta + {{cos }^2}theta } right)left( {frac{{sin theta }}{{cos theta }}} right) hfill \
hfill \
{text{Use the identity }}{sin ^2}theta + {cos ^2}theta = 1,,,,,,{text{and }},,{text{tan}}theta = frac{{sin theta }}{{cos theta }} hfill \
hfill \
= left( {{{sin }^2}theta + {{cos }^2}theta } right)left( {frac{{sin theta }}{{cos theta }}} right) hfill \
= 1 cdot tan theta hfill \
= frac{y}{x} hfill \
end{gathered} ]
frac{{sin x cdot sin x}}{{left( {1 – sin x} right)left( {1 + sin x} right)}} hfill \
hfill \
{text{Remember that }}left( {a – b} right)left( {a + b} right) = {a^2} – {b^2} hfill \
= frac{{{{sin }^2}x}}{{1 – {{sin }^2}x}} hfill \
hfill \
{text{Use the identity }}{cos ^2}x = 1 – {sin ^2}x hfill \
hfill \
= frac{{{{sin }^2}x}}{{{{cos }^2}x}} = {left( {frac{{sin x}}{{cos x}}} right)^2} hfill \
hfill \
{text{Use }}tan x = frac{{sin x}}{{cos x}} hfill \
hfill \
= {tan ^2}x hfill \
end{gathered} ]
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
end{gathered} ]
period $=T=dfrac{360^circ}{|4|}=90^circ$
The answer is option (c)
{left[ {left( {frac{1}{a}} right)left( {frac{1}{{{b^{ – 1}}}}} right)} right]^{ – 1}} hfill \
= {left[ {frac{1}{a}left( b right)} right]^{ – 1}} hfill \
= {left( {frac{b}{a}} right)^{ – 1}} hfill \
= left( {frac{a}{b}} right) hfill \
end{gathered} ]
dfrac{a}{b}
$$
$dfrac{3x^{1/2}}{3}=dfrac{12}{3}$
$$
x^{1/2}=4
$$
$x=16$
The answer is option (c)
$t_n=0.1times 2^n$
553 m $times dfrac{1000;text{mm}}{1;text{m}}=0.1times 2^n$
We can find the value of $m$ graphically.
For each angle, we shall find $BC$
$BC^2=AC^2+AB^2-2(AC)(AB)cos angle A$
$angle A=105^circ$ : $BC=sqrt{75^2+55^2-2(75)(55)cos(105^circ)}=103.85$ cm
$angle A=125^circ$ : $BC=sqrt{75^2+55^2-2(75)(55)cos(125^circ)}=115.68$ cm
$angle A=145^circ$ : $BC=sqrt{75^2+55^2-2(75)(55)cos(145^circ)}=124.13$ cm
$angle A=165^circ$ : $BC=sqrt{75^2+55^2-2(75)(55)cos(165^circ)}=128.91$ cm
$angle A=175^circ$ : $BC=sqrt{75^2+55^2-2(75)(55)cos(175^circ)}=129.88$ cm
{text{For a sinusoidal function, remember the following }} hfill \
hfill \
y = Acos left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
{text{or }} hfill \
y = Asin left[ {kleft( {x – d} right)} right] + c{text{ }} hfill \
hfill \
{text{amplitude = }}|A| = dfrac{|y_{text{max}}-y_{text{min}}|}{2}hfill \
{text{period = }}T=frac{{{{360}^ circ }}}{|k|} hfill \
{text{equation of axis:}}{text{ }},,,y = c = dfrac{y_{text{max}}+y_{text{min}}}{2} hfill \
hfill \
{text{Generally, if the maximum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=Acos[k(x-d)^circ]+c$}}hfill \\
{text{If the minimum point is translated $d$ units to the right of the}}hfill \\
{text{$y$-axis, the equation is $y=-Acos[k(x-d)^circ]+c$}}hfill \\
{text{Note that multiple possible sinusoidal functions can describe a graph or data}}hfill \
end{gathered} ]
$D_{text{min}}=1.25$ and $D_{text{max}}=6.25$
amplitude = $dfrac{|6.25-1.25|}{2}=2.5$
equation of axis: $D=dfrac{6.25+1.25}{2}=3.75$
period: $16-4=12implies k =dfrac{360}{12}=30$
The maximum point is shifted $4$ units to the right of $y$-axis, $implies d=4$
The equation describing the data is
$$
y=2.5cos[30(x-4)^circ]+3.75
$$
c) Yes. The minimum depth is $1.25$ which is greater than $1$ m.
b) 6.25 m
c) Yes