Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 344: Getting Started

Exercise 1
Step 1
1 of 6
a.) In the revenue function,

$R(x)=(30-2x)(100+20x)$

price per T-shirt = $30 – 2x$

number of T-shirt sold = $100+20x$

We shall describe what each factor in revenue expression represents.

Consider the revenue function,

$R(x)=(30-2x)(100+20x)$

where $R(x)$ is the revenue and $x$ is the number of times at which the price is reduced. Remember that revenue is the product of the T-shirt price and the total number of T-shirt sold. Practically, if the price is reduced, the quantity of T-shirt sold will increase while the price of each shirt will decrease.

Step 2
2 of 6
b.) $R(x)=(30-2x)(100+20x)=0$

This implies that,

$30-2x=0$ or $100+2x=0$

$x=15$ or $x=-5$

Since the number of times can only take positive values, we shall discard the negative value

$x=15$ times

Find the value of $x$ where $R(x)=0$
Step 3
3 of 6
begin{table}[]
begin{tabular}{|c|c|}
hline
begin{tabular}[c]{@{}c@{}}Number of \ Price Reductionend{tabular} & begin{tabular}[c]{@{}c@{}}Revenue (in dollars)\ $R(x)=(30-2x)(100+2x)$end{tabular} \ hline
0 & 3000 \ hline
1 & 3360 \ hline
2 & 3540 \ hline
3 & 3840 \ hline
4 & 3960 \ hline
5 & 4000 \ hline
6 & 3960 \ hline
7 & 3840 \ hline
end{tabular}
end{table}
We shall create a table showing the number of price reductions and its corresponding revenue.

Notice that after the fifth reduction, the maximum revenue was achieved and then the revenue decreases on further price reduction.

Step 4
4 of 6
e.) price per T-shirt = $30-2x$

$;;;;;;;=30-2(5)$

price per T-shirt = 20 dollars

From the table, for maximum revenue, $x=5$. Substitute it to the expression for the price per shirt.
Step 5
5 of 6
number of T-shirt sold = $100+20x$

$=100+20(5)$]

number of T-shirt sold = 200 T-shirts

To determine the number of T-shirt sold for maximum revenue, substitute $x=5$ to the expression for number of T-shirt sold.
Result
6 of 6
for maximum revenue, price per T-shirt = 20 dollars, number of T-shirt sold = 200
Exercise 2
Step 1
1 of 5
a.)Exercise scan
We shall plot the distance traveled by the puck from the edge of the table.

Initially the puck is at the starting point (distance =0), then at 0.25 s, it has traveled 180 cm to reach the opposite end. Since its speed is constant, it shall go back at 0.50s. It has therefore traveled a total distance of 360 cm.

Step 2
2 of 5
b.) The maximum distance from its starting point is at 180 cm, and this occurred at $t=0.25 s$
From the plot, we can determine the maximum distance and the time at which it happened.
Step 3
3 of 5
c.) distance = 180 cm

time = 0.25 s

speed = $dfrac{180 cm}{0.25 s}=720 cm/s$

We shall calculate the speed of the puck in the first 0.25 s. Remember the formula

$speed = dfrac{distance}{time}$

Step 4
4 of 5
d.) The problem, the puck travels up to 2.5 s. Therefore, the domain is all real numbers within the close interval [0,2.5]. Alternatively, this can be written as

${t in bold{R} ;|; 0 leq t leq 2.5 }$

The distance from the edge is restricted by the size of the table. Thus, the range is

$$
{d in bold{R} ;|; 0 leq d leq 180 }
$$

We shall find the domain and range. Remember that the domain is the set of all possible values of the independent variable (time in this case) while range is a set of all possible values of dependent variable (distance in this case).
Result
5 of 5
${t in bold{R} ; |; 0 leq t leq 2.5 s }$, ${d in bold{R} ;| ;0 leq d leq 180 cm }$
Exercise 3
Step 1
1 of 7
a.)Exercise scan
Sketch the triangle for part a.)
Step 2
2 of 7
$cos 40^circ=dfrac{y}{15}$

$$
y= 15 cos 40^circ
$$

We shall calculate the value of $theta$.

First, we need to calculate $y$. Remember that

$cos alpha = dfrac{adjacent;side}{hypotenuse}$

Step 3
3 of 7
$sin theta = dfrac{15 cos 40^circ}{22}$

$theta = sin^{-1}left(dfrac{15 cos 40^circ}{22}right)$

$$
theta = 31.5^circ
$$

Now we can calculate $theta$ using the formula

$$
sin theta = dfrac{opposite;side}{hypotenuse}
$$

Step 4
4 of 7
b.)Exercise scan
Sketch the triangle for part b.)
Step 5
5 of 7
$tan 52^circ = dfrac{9}{x}$

$$
x=dfrac{9}{tan 52^circ}
$$

Use the formula

$$
tan alpha = dfrac{opposite;side}{adjacent;side}
$$

Step 6
6 of 7
$tan (180^circ-theta) = dfrac{9}{11+9/tan 52^circ}$

$180^circ-theta= tan^{-1}left( dfrac{9}{11+9/tan 52^circ}right)$

$$
theta = 153.5^circ
$$

Now, that we have both legs of the bigger right triangle, we can calculate $theta$ using the formula

$tan alpha=dfrac{opposite;side}{adjacent;side}$

Also remember that straight angle has a measure of $180^circ$.

Result
7 of 7
a.) $31.5^circ$ b.) $153.5^circ$
Exercise 4
Step 1
1 of 2
$sin35=dfrac{7}{9+x}$

$9+x=dfrac{7}{sin35}$

$x=dfrac{7}{sin35}-9$

$$
x=3.2
$$

We can use the sin function to determine the length of $9+x$. From which we can then solve for $x$. Sine is the opposite side length of the angle divided by the hypotenuse.
Result
2 of 2
3.2
Exercise 5
Step 1
1 of 6
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching by a factor of $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression by $dfrac{1}{|k|}$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
Step 2
2 of 6
a) $y=-f(x)implies$ reflection in the $x$-axis

Exercise scan

Step 3
3 of 6
b) $y=3f(x)implies$ vertical stretching by factor 3

Exercise scan

Step 4
4 of 6
c) $f(x)+4implies$ translation 4 units upward

Exercise scan

Step 5
5 of 6
d) $-2f(x-3)implies$ reflection in $x$-axis, vertical stretching by factor 2 and translation 3 units to the right

Exercise scan

Result
6 of 6
a) reflection in $x$-axis

b) vertical stretch by factor 3

c) translation 4 units up

d) reflection in $x$-axis, vertical stretch by factor 2, translation 3 units to the right

The graphs have been plotted in the answers.

Exercise 6
Step 1
1 of 3
Exercise scan
Sketch the triangle.

The problems mentioned that the angle of elevation is $32^circ$, thus the other angle must be $90^circ-32^circ=58^circ$

Step 2
2 of 3
$dfrac{40}{sin 58^circ}=dfrac{x}{sin 32^circ}$

$x=dfrac{40}{sin 58^circ}cdot sin 32^circ$

$x=25$ m

Use sine law.

$dfrac{A}{sin alpha}=dfrac{B}{sin beta}$

Here, A must be the opposite side of $alpha$ and B is the opposite side of $beta$.

Result
3 of 3
$x=25$ m
Exercise 7
Step 1
1 of 10
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$f(x)+k$ & shift $f(x)$ up $k$ units \ hline
$f(x)-k$ & shift $f(x)$ down $k$ units \ hline
$f(x+k)$ & shift $f(x)$ left $k$ units \ hline
$f(x-k)$ & shift $f(x)$ right $k$ units \ hline
$kcdot f(x)$ & multiply $y$-values by $k$ \ hline
$f(kx)$ & divide $x$-values by $k$ \ hline
$-f(x)$ & reflect $f(x)$ over $x$-axis \ hline
$f(-x)$ & reflect $f(x)$ over $y$-axis \ hline
end{tabular}
end{table}
The list of known transformations of functions with their description is shown.

We shall apply this transformation to

$$
y=f(x)=x^2
$$

Step 2
2 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=x^2+2$

Exercise scan

Shift 2 units up
Step 3
3 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=x^2-2$

Exercise scan

Shift 2 units down
Step 4
4 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=(x+2)^2$

Exercise scan

Shift 2 units to the left.
Step 5
5 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=(x-2)^2$

Exercise scan

Shift 2 units to the right
Step 6
6 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=2x^2$

Exercise scan

Multiple $y$-values by 2
Step 7
7 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=(2x)^2$

Exercise scan

Divide $x$-values by 2
Step 8
8 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=-x^2$

Exercise scan

Reflect over $x$-axis.
Step 9
9 of 10
$color{#c34632} y=x^2$

$color{#4257b2}y=(-x)^2$

Exercise scan

Reflect over $y$-axis. Since $y=x^2$ is symmetric with respect to $y$-axis, the graph is the same.
Result
10 of 10
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$f(x)+k$ & shift $f(x)$ up $k$ units \ hline
$f(x)-k$ & shift $f(x)$ down $k$ units \ hline
$f(x+k)$ & shift $f(x)$ left $k$ units \ hline
$f(x-k)$ & shift $f(x)$ right $k$ units \ hline
$kcdot f(x)$ & multiply $y$-values by $k$ \ hline
$f(kx)$ & divide $x$-values by $k$ \ hline
$-f(x)$ & reflect $f(x)$ over $x$-axis \ hline
$f(-x)$ & reflect $f(x)$ over $y$-axis \ hline
end{tabular}
end{table}
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New