All Solutions
Page 340: Chapter Self-Test
$r=sqrt{x^2+y^2}$
$cos theta=dfrac{x}{r}$
$sin theta=dfrac{y}{r}$
$tan theta=dfrac{y}{x}$
$sectheta=dfrac{1}{costheta}=dfrac{r}{x}$
$csctheta=dfrac{1}{sin theta}=dfrac{r}{y}$
$$
cottheta=dfrac{1}{tantheta}=dfrac{x}{y}
$$
$r=sqrt{(-3)^2+0^2}=3$
i) $costheta=dfrac{-3}{3}=-1$
$sin theta=dfrac{0}{3}=0$
$tantheta=dfrac{0}{-3}=0$
$sectheta=dfrac{1}{costheta}=-1$
$csctheta=dfrac{1}{0}=text{undefined}$
$cottheta=dfrac{1}{0}=text{undefined}$
ii) The principal angle is $180^circ$ and related acute angle is $0^circ$.
$r=sqrt{(-8)^2+(-6)^2}=sqrt{100}=10$
$cos theta=dfrac{-8}{10}=-dfrac{4}{5}$
$sin theta=dfrac{-6}{10}=-dfrac{3}{5}$
$tan theta=dfrac{-6}{-8}=dfrac{3}{4}$
$sectheta=dfrac{1}{costheta}=-dfrac{5}{4}$
$csctheta=dfrac{1}{sintheta}=-dfrac{5}{3}$
$cottheta=dfrac{1}{tantheta}=dfrac{4}{3}$
The reference acute angle is
$beta=tan^{-1}left|dfrac{-6}{-8}right|=37^circ$
Since $theta$ is in quadrant 3, the principal angle is
$$
theta=180^circ+beta=180+37=217^circ
$$
$sectheta=-1$ , $csctheta$ and $cottheta$ are undefined
$theta=180^circ$, $beta=0^circ$, see sketch inside
b) $sin theta=-dfrac{3}{5}$, $costheta=-dfrac{4}{5}$ , $tantheta=dfrac{3}{4}$
$csctheta=-dfrac{5}{3}$ , $sectheta=-dfrac{5}{4}$ , $cottheta=dfrac{4}{3}$
$theta=217^circ$ , $beta=37^circ$, see sketch inside
1) Find the reference acute angle $beta$ using inverse trigonometric function as
$f(theta)=cimplies beta=f^{-1}(|c|)$
2) Based on the sign of $c$, determine the possible quadrants for $theta$ within the given range.
3) Find the principal angle $theta$ on those quadrants that has reference acute angle of $beta$
defarraystretch{1.4}%
begin{tabular}{|l|l|l|l|l|}
hline
& QI & QII & QIII & QIV\ hline
sine & $+$ & $+$ & $-$ & $-$ \ hline
cosine & $+$ & $-$ & $-$ & $+$ \ hline
tangent & $+$ & $-$ & $+$ & $-$ \ hline
principal angle $theta$ & $;;;;beta;;;;$ & $180^circ-beta$ & $180^circ+beta$ & $360^circ-beta$ \ hline
end{tabular}
end{table}
$sin theta0$ in QI and QIV
QI: $theta=beta=30^circ$
QIV: $theta=360^circ-beta=360^circ-30^circ=330^circ$
$cottheta<0$ in QII and QIV
QII: $theta=180^circ-beta=180^circ-45^circ=135^circ$
QIV: $theta=360^circ-beta=360^circ-45^circ=315^circ$
$sectheta=-2implies costheta=-dfrac{1}{2}implies beta=cos^{-1}left|-dfrac{1}{2}right|=60^circ$
$costheta<0$ in QII and QIII
QII: $theta=180^circ-beta=180^circ-60^circ=120^circ$
QII: $theta=180^circ+beta=180^circ+60^circ=240^circ$
b) $30^circ$ , $330^circ$
c) $135^circ$ , $315^circ$
d) $120^circ$ , $240^circ$
$sintheta=pmsqrt{1-cos^2theta}=pmsqrt{1-left(-dfrac{5}{13}right)}=pmsqrt{dfrac{144}{169}}=pmdfrac{12}{13}$
In QII, $sintheta>0$, thus, $sin theta=dfrac{12}{13}$
$$
sin thetacostheta=left(dfrac{12}{13}right)cdot left(-dfrac{5}{13}right)=-dfrac{60}{169}
$$
This is an identity so it would be true for all real $theta$
b) $1$
$=dfrac{sin^2 phi}{cos^2phi}+1$
$color{#c34632}text{Use} sin^2theta+cos^2theta=1$
$=dfrac{1-cos^2phi}{cos^2phi}+1$
$=dfrac{1}{cos^2phi}-1+1$
$=dfrac{1}{cos^2phi}$
$$
=sec^2phi
$$
$=1+dfrac{cos^2alpha}{sin^2alpha}$
$color{#c34632}text{Use} sin^2theta+cos^2theta=1$
$=1+dfrac{1-sin^2alpha}{sin^2alpha}$
$=1+dfrac{1}{sin^2alpha}-1$
$=dfrac{1}{sin^2alpha}$
$$
=csc^2alpha
$$
$$
x^2+y^2=r^2implies left(dfrac{x}{r}right)^2+left(dfrac{y}{r}right)^2=1implies sin^2theta+cos^2theta=1
$$
b) both are derived from $sin^2theta+cos^2theta=1$
$a^2=b^2+c^2-2bccos A$
$b^2=a^2+c^2-2accos B$
c) $dfrac{sin A}{a}=dfrac{sin B}{b}=dfrac{sin C}{c}$ or $dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$
b) $c^2=a^2+b^2-2abcos C$
$a^2=b^2+c^2-2bccos A$
$b^2=a^2+c^2-2accos B$
c) $dfrac{sin A}{a}=dfrac{sin B}{b}=dfrac{sin C}{c}$ or $dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$
Remember that $tan theta=dfrac{text{opposite side}}{text{adjacent side}}$
To find $w$, we can use tangent ratio to find $BD$ and $DC$, then add them together.
$tan 49^circ=dfrac{60.0}{BD}implies BD=dfrac{60.0}{tan 49^circ}=52.16$ m
$tan 53^circ=dfrac{60.0}{DC}implies DC=dfrac{60.0}{tan 53^circ}=45.21$ m
$w=BD+DC=52.16+45.21=97.4$ m
$tan 40^circ=dfrac{5.5}{GJ}implies GJ=dfrac{5.5}{tan 40^circ}=6.55$
$tan 48^circ=dfrac{5.5}{HJ}implies HJ=dfrac{5.5}{tan 48^circ}=4.95$
$w=GJ-HJ=6.55-4.95=1.6$ m
b) $1.6$ m
$bsin A < a < bimplies$ 2 triangles
$bsin A<b aimplies$ no triangle
Now, we will check how many triangles are possible.
$bsin A=2.8sin 41^circ=1.84$
Since $b sin A > a$, no triangle exists.
$csin A < a < cimplies$ 2 triangles
$csin A<c aimplies$ no triangle
Now, we will check how many triangles are possible.
$csin A=6.1sin 20^circ=2.09$
$csin A < a<cimplies$ two triangles are possible
$dfrac{sin C}{c}=dfrac{sin A}{a}implies C=sin^{-1}left(dfrac{csin A}{a}right)$
$C=sin^{-1}left(dfrac{6.1sin 20^circ}{2.1}right)=83.46^circ=83^circ$
$angle B=180^circ-(20+83.46)^circ=76.54^circ=77^circ$
$dfrac{b}{sin B}=dfrac{a}{sin A}$
$b=dfrac{asin B}{sin A}=dfrac{2.1sin 76.54^circ}{sin 20^circ}=5.97$ cm = 6.0 cm
$angle C=180^circ-83^circ=97^circ$
$angle B=180^circ-(97+20)^circ=63^circ$
$dfrac{b}{sin 63^circ}=dfrac{2.1}{sin 20^circ}$
$b=dfrac{2.1sin 63^circ}{sin 20^circ}=5.5$ cm
b) two triangles are possible
triangle 1: $angle B=77^circ$, $angle C=83^circ$, $b= 6.0$ cm
triangle 2: $angle B=97^circ$, $angle C=63^circ$, $b=5.5$ cm
$tan 41^circ=dfrac{h}{AC}implies AC=dfrac{h}{tan 41^circ}$
$tan 52^circ=dfrac{h}{BC}implies BC=dfrac{h}{tan 52^circ}$
$triangle ABC$ is a right triangle, thus, we can use Pythagorean formula
$AB^2=AC^2+BC^2$
$30^2=left(dfrac{h}{tan 41^circ}right)^2+left(dfrac{h}{tan 52^circ}right)^2$
$30^2=h^2left(dfrac{1}{tan^241^circ}+dfrac{1}{tan^2 52^circ}right)$
$h=sqrt{dfrac{30^2}{dfrac{1}{tan^2 41^circ}+dfrac{1}{tan^252^circ}}}$
$h=22$ m
Therefore, the tree is 22 m high.