All Solutions
Page 338: Practice Questions
$cos theta=dfrac{text{adjacent;side}}{text{hypotenuse}}$
$sin theta=dfrac{text{opposite;side}}{text{hypotenuse}}$
$tan theta=dfrac{text{opposite;side}}{text{adjacent side}}$
$sectheta=dfrac{1}{costheta}=dfrac{text{hypotenuse}}{text{adjacent side}}$
$csctheta=dfrac{1}{sin theta}=dfrac{text{hypotenuse}}{text{opposite side}}$
$cot theta=dfrac{1}{tan theta}=dfrac{text{adjacent side}}{text{opposite side}}$
a)
hypotenuse = $sqrt{8^2+13^2}=sqrt{233}$
adjacent side = 8
opposite side = 13
$sec theta=dfrac{text{hypotenuse}}{text{adjacent side}}=dfrac{sqrt{233}}{8}$
$csc theta=dfrac{text{hypotenuse}}{text{opposite side}}=dfrac{sqrt{233}}{13}$
$cot theta=dfrac{text{adjacent side}}{text{opposite side}}=dfrac{8}{13}$
We can calculate $theta$ using any trigonometric ratio,
$tan theta=dfrac{13}{8}$
$theta=tan^{-1}left(dfrac{13}{8}right)=58^circ$
opposite side = 12
adjacent side = 35
$sec theta=dfrac{37}{35}$
$csctheta=dfrac{37}{12}$
$cot theta=dfrac{35}{12}$
$$
theta=tan^{-1}left(dfrac{12}{35}right)=19^circ
$$
opposite side = $23$
hypotenuse = 39
$sec theta=dfrac{39}{4sqrt{62}}$
$csc theta=dfrac{39}{23}$
$cot theta=dfrac{4sqrt{62}}{23}$
$$
theta=sin^{-1}left(dfrac{23}{39}right)=36^circ
$$
b) $csctheta=dfrac{37}{12}$ , $sectheta=dfrac{37}{35}$ , $cottheta=dfrac{35}{12}$ , $theta=19^circ$
c) $csctheta=dfrac{29}{23}$ , $sectheta=dfrac{39}{4sqrt{62}}$ , $cottheta=dfrac{4sqrt{62}}{23}$ , $theta=36^circ$
$thetaimplies (cos theta,sin theta)$
$theta=30^circimplies left(dfrac{sqrt{3}}{2},dfrac{1}{2}right)$
$theta=45^circimplies left(dfrac{sqrt{2}}{2}, dfrac{sqrt{2}}{2}right)$
$theta=60^circimplies left(dfrac{1}{2},dfrac{sqrt{3}}{2}right)$
$tan theta=dfrac{sin theta}{costheta}$
b) $left(1-dfrac{sqrt{2}/2}{sqrt{2}/2}right)left(dfrac{1}{2}right)left(dfrac{sqrt{3}}{2}right)left(dfrac{sqrt{3}/2}{1/2}right)=0$
c) $dfrac{1/2}{sqrt{3}/2}+2left(dfrac{sqrt{2}}{2}right)left(dfrac{1}{2}right)=dfrac{1}{sqrt{3}}+dfrac{sqrt{2}}{2}$
$$
=dfrac{2+sqrt{2}sqrt{3}}{2sqrt{3}}cdot dfrac{sqrt{3}}{sqrt{3}}=dfrac{2sqrt{3}+3sqrt{2}}{6}
$$
b) $0$
c) $dfrac{2sqrt{3}+3sqrt{2}}{6}$
defarraystretch{1.4}%
begin{tabular}{|l|l|l|l|l|}
hline
& QI & QII & QIII & QIV\ hline
interval & $0<theta<90^circ$ & $90^circ< theta<180^circ$ & $180^circ <theta<270^circ$ & $270^circ <theta<360^circ$ \ hline
reference angle $beta$ & $theta$ & $180^circ-theta$ & $180^circ+theta$ & $360^circ-theta$ \ hline
sine & $+$ & $+$ & $-$ & $-$ \ hline
cosine & $+$ & $-$ & $-$ & $+$ \ hline
tangent & $+$ & $-$ & $+$ & $-$ \ hline
end{tabular}
end{table}
(i) $18^circ$ is in QI where $tan theta>0$
(ii) $theta=18^circ$, $beta=18^circ$
Another angle that has equivalent ratio is in QIII with $beta=18^circ$
$$
theta=180^circ+18^circ=198^circ
$$
(i) $205^circ$ is in QIII where $sin theta<0$
(ii) $beta=theta-180^circ=205^circ-180^circ=25^circ$
Another angle that has equivalent ratio is in QIV with $beta=25^circ$
principal angle: $theta=360-beta=360-25=335^circ$
(i) $cos(-55^circ)=0.5736$
It goes clockwise so it will be in QIV where $cos theta>0$
(ii) $beta=55^circ$
Another angle with equivalent ratio is in QI with $beta=55^circ$
principal angle: $55^circ$
b) $-$ ; $sin 205^circ=-0.4226$ ; $theta=355^circ$ , $beta=25^circ$
c) $+$ ; $cos(-55^circ)=0.5736$ ; $theta=55^circ$ , $beta=55^circ$
$r=sqrt{x^2+y^2}$
$cos theta=dfrac{x}{r}$
$sin theta=dfrac{y}{r}$
$tan theta=dfrac{y}{x}$
$cos theta=dfrac{-2}{sqrt{29}}=-dfrac{2sqrt{29}}{29}$
$sin theta=dfrac{5}{sqrt{29}}=dfrac{5sqrt{29}}{29}$
$$
tan theta=dfrac{5}{-2}=-dfrac{2}{5}
$$
$cos theta=dfrac{3}{3sqrt{2}}=dfrac{1}{sqrt{2}}=dfrac{sqrt{2}}{2}$
$sin theta=dfrac{-3}{3sqrt{2}}=-dfrac{1}{sqrt{2}}=-dfrac{sqrt{2}}{2}$
$$
tan theta=dfrac{-3}{3}=-1
$$
$cos theta=dfrac{-4}{sqrt{41}}=-dfrac{4sqrt{41}}{41}$
$sin theta=dfrac{-5}{sqrt{41}}=-dfrac{5sqrt{41}}{41}$
$$
tan theta=dfrac{-5}{-4}=dfrac{5}{4}
$$
b) $sin theta=-dfrac{sqrt{2}}{2}$ , $costheta=dfrac{sqrt{2}}{2}$ , $tan theta=-1$
c) $sin theta=-dfrac{5sqrt{41}}{41}$ , $costheta=-dfrac{4sqrt{41}}{41}$ , $tantheta=dfrac{5}{4}$
Using the identity $sin^2phi +cos^2phi =1$
$sin phi=pmsqrt{1-cos^2phi}$
$$
sin phi =pmsqrt{1-left(dfrac{-7}{sqrt{53}}right)^2}=pmsqrt{dfrac{4}{53}}=pm dfrac{2}{sqrt{53}}
$$
b) If $phi$ is in QII
$sin phi = dfrac{2}{sqrt{53}}$
$tan phi = dfrac{sinphi}{cosphi}=dfrac{2/sqrt{53}}{-7/sqrt{53}}=-dfrac{2}{7}$
$sec phi = dfrac{1}{costheta}=-dfrac{sqrt{53}}{7}$
$cscphi=dfrac{1}{sin theta}=dfrac{sqrt{53}}{2}$
$cotphi=dfrac{1}{tanphi}=-dfrac{7}{2}$
If $phi$ is in QIII,
$sin phi = -dfrac{2}{sqrt{53}}$
$tan phi = dfrac{2}{7}$
$sec phi=-dfrac{sqrt{53}}{7}$
$csc phi =dfrac{sqrt{53}}{2}$
$$
cot theta=dfrac{7}{2}
$$
$phi=cos^{-1}left(left|dfrac{-7}{sqrt{53}}right|right)=16^circ$
In QII: $phi = 180^circ-beta=180^circ-16^circ=164^circ$
In QIII: $phi=180^circ+beta=180^circ+16^circ=196^circ$
b) Quadrant 2: $sin phi = dfrac{2}{sqrt{53}}$ , $tan phi=-dfrac{2}{7}$ , $cscphi=dfrac{sqrt{53}}{2}$ ,
$secphi=-dfrac{sqrt{53}}{7}$ , $cotphi=-dfrac{7}{2}$
Quadrant 3: $sinphi=-dfrac{2}{sqrt{53}}$ , $tan phi=dfrac{2}{7}$ , $cscphi=-dfrac{sqrt{53}}{2}$ , $secphi=-dfrac{sqrt{53}}{7}$ , $cotphi=dfrac{7}{2}$
c) $phi =164^circ$ in quadrant 2 and $phi=196^circ$ in quadrant 3
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
$=dfrac{cos^2beta}{sin beta}=dfrac{1-sin^2beta}{sin beta}=dfrac{1}{sin beta}-sin beta$ = R.S.
restriction: $sin betane 0$
defarraystretch{2.5}%
begin{tabular}{|l|l|}
hline
$bold{Reciprocal; Identities}$ & $sec theta=dfrac{1}{costheta}$ \ cline{2-2}
& $csc theta=dfrac{1}{sin theta}$ \ cline{2-2}
& $cot theta=dfrac{1}{tan theta}$ \ hline
$bold{Quotient; Identities}$ & $tan theta=dfrac{sintheta}{costheta}$ \ cline{2-2}
& $cottheta=dfrac{costheta}{sin theta}$ \ hline
$bold{Pythagorean; Identities}$ & $sin^2theta+cos^2theta=1$ \ cline{2-2}
& $1+tan^2theta=sec^2theta$ \ cline{2-2}
& $1+cot^2theta=csc^2theta$ \ hline
end{tabular}
end{table}
$=left(dfrac{sin alpha}{cos alpha}right)(cos alpha)$
$=sin alpha$ = R.S.
$= sin phi left( dfrac{1}{cos phi}right)$
$=dfrac{sinphi}{cosphi}cdot dfrac{1/sin phi}{1/sinphi}$
$=dfrac{1}{(cosphi/sinphi)}$
$=dfrac{1}{cotphi}$ = L.S
$$
cosphineq 0implies phineq 90^circtext{ or } 270^circ
$$
$$
=dfrac{sin x cos x}{cos x/sin x}
$$
$$
=dfrac{sin^2 xcdot cos x}{cos x}
$$
$= sin^2 x$
$=1-cos^2x$ = L.S.
$$
sin xneq 0implies xneq 0^circtext{ or }180^circ
$$
$=sectheta (costheta+sin theta )$
$=dfrac{1}{costheta} cdot (costheta+sin theta)$
$=dfrac{costheta}{costheta}+dfrac{sin theta}{costheta}$
$=1+tantheta$ = R.S.
$$
costhetaneq 0implies thetaneq 90^circtext{ or }270^circ
$$
begin{tabular}{|l|l|l|}
hline
$angle A < 90^circ$ & $a<h$ & no triangle exists \ cline{2-3}
& $a=h$ & one right triangle \ cline{2-3}
& $bsin A<b<a$ & one triangle \ cline{2-3}
& $bsin A<a90^circ$ & $ab$ & one triangle \ hline
end{tabular}
end{table}
Since
$csin B < b < c$, two triangles exists.
Triangle 1:
$dfrac{sin C}{c}=dfrac{sin B}{b}$
$C=sin^{-1}left(dfrac{csin B}{b}right)$
$C=sin^{-1}left(dfrac{5.5sin 30^circ}{3.0}right)=66^circ$
$A=180^circ-(30+66.44)^circ=84^circ$
$dfrac{a}{sin A}=dfrac{b}{sin B}$
$a=dfrac{bsin A}{sin B}=dfrac{3.0sin 84^circ}{sin 30^circ}=6$ cm
Triangle 2:
$dfrac{sin (180-C)}{c}=dfrac{sin B}{b}$
$180 – C=sin^{-1}left(dfrac{csin B}{b}right)$
$C=180-sin^{-1}left(dfrac{5.5sin 30^circ}{3.0}right)=180-66^circ=114^circ$
$A=180^circ-(30+114)^circ=36^circ$
$dfrac{a}{sin A}=dfrac{b}{sin B}$
$a=dfrac{bsin A}{sin B}=dfrac{3sin 36^circ}{sin 30^circ}=3.6$ cm
Since
$bsin C< c <bimplies$ two triangles exist
Triangle 1
$dfrac{sin B}{b}=dfrac{sin C}{c}$
$B=sin^{-1}left(dfrac{bsin C}{c}right)=sin^{-1}left(dfrac{12.2sin 34^circ}{8.2}right)=56.3^circ=56^circ$
$A=180^circ-(56.3+34)=89.7=90^circ$
$dfrac{a}{sin A}=dfrac{c}{sin C}$
$a=dfrac{csin A}{sin C}=dfrac{8.2sin 89.7^circ}{sin 34^circ}=14.66=14.7$ cm
Triangle 2
$dfrac{sin (180^circ-B)}{b}=dfrac{sin C}{c}$
$B=180-sin^{-1}left(dfrac{12.2sin 34^circ}{8.2}right)=180-56=124^circ$
$A=180^circ-(124+34)^circ=22^circ$
$dfrac{a}{sin A}=dfrac{c}{sin C}$
$a=dfrac{csin A}{sin C}=dfrac{8.2sin 22^circ}{sin 34^circ}=5.49=5.5$ cm
Since $asin C > c$, no triangle exists.
triangle 2: $a=3.6$ cm, $angle A=36^circ$, $angle C=114^circ$
b) triangle 1: $a=14.7$ cm, $angle A=90^circ$, $angle B=56^circ$
triangle 2: $a=5.5$ cm, $angle A=22^circ$, $angle B=124^circ$
c) no triangle exists
$dfrac{sin 25^circ}{15}=dfrac{sin F}{20}$
$F=sin^{-1}left(dfrac{20sin 25^circ}{15}right)=34.3^circ$
$angle Q=180^circ-(25+34.3)=120.7^circ$
The distance from station P to the fire F is $PF$ which can solve by cosine law
$PF=sqrt{20^2+15^2-2(20)(15)cos120.7^circ}=30.5$ km
$dfrac{sin 25^circ}{15}=dfrac{sin (180-F)}{20}$
$180-F=sin^{-1}left(dfrac{20sin 25^circ}{25}right)=145.7^circ$
$angle Q=180^circ-(25+145.7)^circ=9.3^circ$
$PF=sqrt{20^2+15^2-2(20)(15)cos 9.3^circ}=5.7$ km
case 2: $5.7$ km
Use cosine law in the following.
a) $j=sqrt{11.3^2+7.7^2-2(11.3)(7.7)cos 108^circ}=15.5$
b) $c=sqrt{6.0^2+8^2-2(6)(8)cos 72^circ}=8.4$
c) $m=sqrt{6.2^2+4.5^2-2(6.2)(4.5)cos 55^circ}=5.2$
b) 8.4
c) 5.2
$angle BFW=180^circ-(45+70)^circ=65^circ$
Use sine law to find $BF$
$dfrac{BF}{sin 70^circ}=dfrac{6.0}{sin 65^circ}$
$BF=dfrac{6.0sin 70^circ}{sin 65^circ}=6.22$ m
The height of the ceiling is $h$
$sin 45^circ=dfrac{h}{BF}$
$h=BFsin 45^circ=6.22sin 45^circ=4.4$ m
We can use tangent ratio to find $AB$
$tan 57.5^circ=dfrac{AB}{30}implies AB=30tan57.5^circ=47.1$ m
We shall use another tangent ratio to solve for $h$
$tan 15.3^circ=dfrac{h}{47.1}$
$h=47.1tan15.3^circ=12.88text{ m} = 13$ m
$dfrac{sin (angle ABC)}{12}=dfrac{sin 39^circ}{8.9}$
$angle ABC=sin^{-1}left(dfrac{12sin 39^circ}{8.9}right)=58.05^circ$
$angle ACB=180^circ-(39^circ+58.05^circ)=83^circ$
Use another sine law to find $AB$
$dfrac{AB}{sin 83^circ}=dfrac{8.9}{sin 39^circ}$
$AB=dfrac{8.9sin 83^circ}{sin 39^circ}=14$ m
Now, we can solve for $h$ using tangent
$tan theta=dfrac{4.7}{14}$
$theta=tan^{-1}left(dfrac{4.7}{14}right)=18.6^circ=19^circ$
Note that the answer at the back of your book is $18^circ$ which could be a rounding off error.
theta=19^circ
$$