All Solutions
Page 332: Check Your Understanding
$sin 35^circ =dfrac{1}{h_1}$.
Step 2: Find the hypotenuse for the bigger triangle $h_2$
$sin 35^circ=dfrac{45}{h_2}$
Step 3: The length of the line is $h_1+h_2=dfrac{1}{sin 35^circ}+dfrac{45}{sin 35^circ}$
Step 2: Find the hypotenuse for the bigger triangle $h_2$
Step 3: Find $h_1+h_2$
For sine law:
Since it is isosceles, $angle A = angle C= dfrac{180-80}{2}=50^circ$
The side opposite to $80^circ$ is $4.0+2(0.5)=5.0$
$dfrac{x}{sin 50^circ}=dfrac{5.0}{sin 80^circ}implies x=dfrac{5.0sin 50^circ}{sin 80^circ}=3.89$ m
For cosine law
The side opposite to $80^circ$ is $4.0+2(0.5)=5.0$
$5^2=x^2+x^2-2(x)(x)cos 80^circ$
$25=2x^2-2x^2cos 80^circ$
$25=2x^2(1-cos 80^circ)$
$x=sqrt{dfrac{25}{2(1-cos80^circ)}}=3.89$ m
Both methods have the same answer.
He can calculate $x$ using sine.
$sin40^circ=dfrac{2.5}{x}implies x=dfrac{2.5}{sin 40^circ}=3.89$ m
b) Make a line from the midpoint of AC to B to form right triangles.
a) Find $DF$ using tangent.
$tan 35^circ=dfrac{DF}{15}$
$DF=15tan 35^circ=10.5$
Find $x$ using sine.
$sin 45^circ=dfrac{DF}{x}$
$x=dfrac{10.5}{sin 45^circ}=15$ cm
Find $BC$ using cosine law.
Here, $DB=DC=$ 15 cm, so
$BC=sqrt{15^2+15^2-2(15)(15)cos 70^circ}=17.2$ cm
Find $x$ using sine. The opposite of $27^circ$ is BC.
$sin 27^circ=dfrac{BC}{x}$
$x=dfrac{BC}{sin 27^circ}=dfrac{17.2}{sin 27^circ}=38$ cm
We know that $angle ABC=180^circ$ so we can obtain $angle DBC$ as
$angle DBC=180^circ-(90+60)^circ=30^circ$
Now that we have $angle DBC=30^circ$, we can use sine law to find $BD$
$dfrac{BD}{sin 115^circ}=dfrac{10}{sin 30^circ}$
$BD=dfrac{10sin 115^circ}{sin 30^circ}=18.13$ cm
With $BD=18.13$, we can use sine law to find $BE$
$dfrac{BE}{sin 55^circ}=dfrac{BD}{sin 65^circ}$
$BE=dfrac{18.13sin 55^circ}{sin 65^circ}=16.39$ cm
With $BE=16.39$, we can use sine to find $x$
$sin 70^circ=dfrac{BE}{x}$
$x=dfrac{BE}{sin 70^circ}=dfrac{16.39}{sin 70^circ}=17.44=17$ cm
$BC=sqrt{18^2+14^2-2(18)(14)cos 95^circ}=23.75$ cm
We can find $AB$ and $AC$ using Pythagorean formula
$AB=sqrt{18^2+15^2}=23.43$
$AC=sqrt{14^2+15^2}=20.52$
Now, we can calculate $theta$ using cosine law
$BC^2=AB^2+AC^2-2(AB)(AC)cos theta$
$theta=cos^{-1}left(dfrac{AB^2+AC^2-BC^2}{2(AB)(AC)}right)$
$theta=cos^{-1}left(dfrac{23.43^2+20.52^2-23.75^2}{2(23.43)(20.52)}right)=65^circ$
*Note that the answer at the back of the book is $93^circ$ which is incorrect.
b) $38$ cm
c) $17$ cm
d) $65^circ$
$angle D=180^circ-(50+66)^circ=64^circ$
Calculate $DC$ using sine law
$dfrac{DC}{sin 50^circ}=dfrac{175.0}{sin 64^circ}$
$DC=dfrac{175.0sin 50^circ}{sin 64^circ}=149.153$ m
Calculate $h$ using tangent.
$tan 74^circ=dfrac{h}{DC}$
$h=DCtan 74^circ=(149.153)(tan 74^circ)=520.2$ m
$angle CAD=180-(74+90)=16^circ$
$dfrac{h}{sin 74^circ}=dfrac{DC}{sin (16)^circ}$
$dfrac{h}{sin 74^circ}=dfrac{149.153}{sin 16^circ}$
$h=dfrac{149.153sin 74^circ}{sin 16^circ}=520.2$ m
b) Yes. Use sine law in $triangle ADC$
$tan 2^circ=dfrac{226}{AB}$
$AB=dfrac{226}{tan 2^circ}=6471.8$ m
Similarly,
$AV=dfrac{226}{tan 3^circ}=4312.3$ m
We can calculate $BV$ using cosine law
$BV=sqrt{(AB)^2+(AV)^2-2(AB)(AV)cos (angle BAV)}$
$BV=sqrt{6471.8^2+4312.3^2-2(6471.8)(4312.3)cos 80^circ}$
$BV=7127$ m
The distance between Beamville and Vineland is $7127$ m
We can obtain $angle BCA=250-180=70^circ$
We can solve for $BC$ and $AC$ using tangent.
$tan 34^circ=dfrac{166}{BC}$
$BC=dfrac{166}{tan 34^circ}=246.1$
Similarly,
$AC=dfrac{166}{tan 40^circ}=197.8$
Now, we can calculate $AB$ using cosine law.
$AB=sqrt{BC^2+AC^2-2(BC)(AC)cos (angle BCA)}$
$AB=sqrt{246.1^2+197.8^2-(246.1)(197.8)cos(70^circ)}$
$AB=258$ m
Therefore, the distance between boat A and boat B is $258$ m.
Let $B$ be the point at the bottom of the balcony.
$tan 20^circ=dfrac{h}{BR}implies BR=dfrac{h}{tan 20^circ}$
Similarly,
$tan 18^circ=dfrac{h}{BP}implies BP=dfrac{h}{tan 18^circ}$
Now, we can use cosine law
$100^2=BR^2+BP^2-2(BR)(BP)cos (angle RBP)$
Since Romeo is facing North and Paris is facing west, $angle RBP =90^circ$
Thus, the cosine law becomes the Pythagorean formula since $cos 90^circ=0$
$100^2=left(dfrac{h}{tan 20^circ}right)^2+left(dfrac{h}{tan 18^circ}right)^2$
$100^2=h^2 left(dfrac{1}{tan^2 20^circ}+dfrac{1}{tan^2 18^circ}right)$
$h=sqrt{dfrac{100^2}{dfrac{1}{tan^220^circ}+dfrac{1}{tan^218^circ}}}$
$h=24$ m
$dfrac{AS}{sin 35^circ}=dfrac{800}{sin 68^circ}$
$AS=dfrac{800sin 35^circ}{sin 68^circ}=494.9$ m
The distance from the helicopter to the sailboat is $HS$ which can be obtained using sine law
$dfrac{HS}{sin 73^circ}=dfrac{AS}{sin 40^circ}$
$HS=dfrac{494.9sin 73^circ}{sin 40^circ}$
$HS=736.3$ m
Therefore, the helicopter is $736$ m away from the sailboat.
$tan 51^circ=dfrac{8}{AB}implies AB=dfrac{8}{tan 51^circ}=6.47$ m
Since the girls are equidistant from the boat, $AT=6.47$ m
We can use cosine law to find $theta$
$6.47^2=6.47^2+8.8^2-2(6.47)(8.8)cos theta$
$$
theta=cos^{-1}left(dfrac{6.47^2+8.8^2-6.47^2}{2(6.47)(8.8)}right)=47.15^circ=47^circ
$$
47^circ
$$
The diagonal is the hypotenuse in Pythagorean formula.
Truck 1:
$sqrt{6.0^2+2.6^2}=6.54$
$sqrt{2.6^2+2.1^2}=3.34$
$sqrt{6^2+2.1^2}=6.35$
Truck 2:
$sqrt{4^2+2.1^2}=4.52$
$sqrt{2.1^2+2.5^2}=3.26$
$sqrt{4^2+2.5^2}=4.72$
Truck 3:
$sqrt{4.5^2+1.6^2}=4.78$
$sqrt{4.5^2+1.8^2}=4.85$
$sqrt{1.6^2+1.8^2}=2.41$
$triangle ABC$: $AB=sqrt{4.5^2+2^2-2(4.5)(2)cos 130^circ}=6$ m
$triangle GHI:$ all given
$triangle JKL:$ $LK=sqrt{4.7^2+4.0^2-2(4.7)(4)cos 42^circ}=3.2$ m
$triangle GHI$ cannot fit in Truck 3 because $2.41$ m is less than the minimum side so it must go to Truck 2.
$triangle JKL$ cannot fit in Truck 3 because its minimum diagonal is 2.41 and all sides of $triangle JKL$ are more than $2.41$ so it must go to Truck 2.
We can use sine law to find $AC$
$dfrac{AC}{sin 30^circ}=dfrac{80}{sin 65^circ}$
$AC=dfrac{80sin 30^circ}{sin 65^circ}=44.14$ m
Now, we can use tangent to find $h$
$tan 28^circ=dfrac{h}{AC}$
$h=ACtan28^circ=44.14tan 28^circ=23$ m
Therefore, the tree is 23 m tall.
We can not perform any cosine law or sine law with the given information.
b) The additional information needed to find $x$ are the following.
(i) height of the balloon $h$
(ii) either of the following: $angle ADC$, $angle DAC$, $angle ACD$
b) We need the distance of the balloon from the ground and any angle on the triangle formed by Bill, Chris, and the point at the ground directly below the balloon.
After two hours, the fast car is $100 text{km/h} times 2text{h} = 200$ km away from the intersection A.
Similarly, the slow car is $80;text{km/h}times 2text{ h}=160$ km away from A
We can find the distance between two cars $FS$ using cosine law
$FS=sqrt{200^2+160^2-2(200)(160)cos 34^circ}=112.0$ km
$FH=sqrt{FS^2+HS^2-2(FS)(HS)cos 20^circ}$
$FH=sqrt{112^2+100^2-2(112)(100)cos 20^circ}=38.66$ km
$FH=39$ km
The distance of the fast car from the helicopter is $39$ km
$sin 20^circ=dfrac{h}{100}$
$h=100sin 20^circ=34.2$ km
The altitude of the helicopter is $34$ km
b) 34 km
We can use tangent to find $AB$ and $BC$
$tan 35^circ=dfrac{1515}{AB}implies AB=dfrac{1515}{tan 35^circ}=2163.6$ m
$tan 31^circ=dfrac{1515}{BC}implies BC=dfrac{1515}{tan 31^circ}=2521.4$ m
Now, we can use cosine law to find the length of the tunnel $x$
$x=sqrt{AB^2+BC^2-(AB)(BC)cos (angle ABC)}$
$x=sqrt{2163.6^2+2521.4-2(2163.6)(2521.4)cos 12^circ}=605$ m
Note that the answer at the back of your book is 524 m which is incorrect and has been corrected in the published errata.
Now, we can calculate the distance between two planes using cosine law.
$PQ=sqrt{120^2+180^2-2(120)(180)cos 55^circ}$
$PQ=148.4$ km
Therefore, the two airplanes are 148.4 km apart. Note that we do not need the altitudes of the plane to solve this problem.
Notice that $MB=CA$ and $BT=AD$
Using cosine,
$$
cos 55^circ=dfrac{CA}{44.5}implies CA=44.5cos 55^circ=25.52
$$
$cos 34^circ=dfrac{AD}{71.0}implies AD=71.0cos 34^circ=58.86$
$MB+BT=25.52+58.86=84.4$ m
b) The straight-line distance between both windows is $MT$
$MT=sqrt{(CA)^2+(AD)^2}=sqrt{25.52^2+58.85^2}=64.2$ m
b) 64.2 m