All Solutions
Page 304: Practice Questions
csc 20=dfrac{1}{sin20}=2.9238
$$
sec 75=dfrac{1}{cos 75}=3.8637
$$
cot 10=dfrac{1}{tan 10}=5.6713
$$
csc 81=dfrac{1}{sin81}=1.0125
$$
a) $cot theta= 0.8701implies tan theta=dfrac{1}{0.8701}$
$theta=tan^{-1}left(dfrac{1}{0.8701}right)=7^circ$
b) $sec theta=4.1011implies cos theta=dfrac{1}{4.1011}$
$theta=cos^{-1}left(dfrac{1}{4.1011}right)=76^circ$
c) $csc theta=1.6406implies sintheta=dfrac{1}{1.6406}$
$theta=sin^{-1}left(dfrac{1}{1.6406}right)=38^circ$
d) $sec theta=2.4312implies cos theta=dfrac{1}{2.4312}$
$theta=cos^{-1}left(dfrac{1}{2.4312}right)=66^circ$
b) $theta=76^circ$
c) $theta=38^circ$
d) $theta=66^circ$
if $tan thetaimplies theta=tan^{-1}left(dfrac{7}{5}right)=54.46^circ$
if $csc theta implies theta=sin^{-1}left(dfrac{5}{7}right)=45.58^circ$
if $sec thetaimplies theta=cos^{-1}left(dfrac{5}{7}right)=44.42^circ$
if $cot thetaimplies theta=tan^{-1}left(dfrac{5}{7}right)=36^circ$
Since the opposite side and hypotenuse are involved, we shall use sine.
$sin theta=dfrac{text{opposite side}}{text{hypotenuse}}$
$sin 31^circ=dfrac{8.3}{x}$
$x=dfrac{8.3}{sin 31^circ}=16.1$ m
Since $0.5$ m of the rop is required, the total length of the rope must be
$16.1+0.5=16.6$ m
$dfrac{1}{sin theta}cos theta$
We know that for a unit circle
$x^2+y^2=1implies cos^2theta+sin^2 theta=1$
At $theta=45^circ$, $cos theta=sin theta=dfrac{sqrt{2}}{2}$
So above or below $theta=45^circ$, one ratio must be greater than the other to keep the sum of squares constant.
$cos theta$ is maximum at $theta=0$ while $sin theta$ is maximum at $90^circ$,
So the closer the angle to $90^circ$, the higher is the value of $sin theta$
Therefore, if $sin theta>costheta$ , $theta$ must be within $45^circ < theta <90^circ$
45^circ < theta <90^circ
$$
1) If $theta$ is within the interval $0leq thetaleq 360^circ$, proceed to step 2. If not, find a coterminal angle $alpha$ within the range using the formula
coterminal angle $alpha=theta+360^circ cdot n$ where $n$ is an integer.
2) Determine which quadrant does the terminal point of $theta$ lie. Based on the quadrant, you can find the reference acute angle $beta$ according to the table below.
3) Evaluate the value of the trigonometric function based on the reference acute angle. You should remember its value for special angles such as $30^circ$, $45^circ$ and $60^circ$.
4) Determine the sign of the trigonometric function based on its quadrant.
center
defarraystretch{2.4}%
begin{tabular}{llll}
hline
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}principal angle;$theta$end{tabular}} & multicolumn{1}{l|}{Quadrant} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}sign $(cos theta, sin theta)$end{tabular}} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $beta$end{tabular}} \ hline
multicolumn{1}{|l|}{$0< theta<90^circ$} & multicolumn{1}{l|}{I} & multicolumn{1}{l|}{$(+,+)$} & multicolumn{1}{l|}{$theta$} \ hline
multicolumn{1}{|l|}{$90^circ <theta < 180^circ$} & multicolumn{1}{l|}{II} & multicolumn{1}{l|}{$(-,+)$} & multicolumn{1}{l|}{$180^circ-theta$} \ hline
multicolumn{1}{|l|}{$180^circ <theta < 270^circ$} & multicolumn{1}{l|}{III} & multicolumn{1}{l|}{$(-,-)$} & multicolumn{1}{l|}{$theta-180^circ$} \ hline
multicolumn{1}{|l|}{$270^circ < theta <360^circ$} & multicolumn{1}{l|}{IV} & multicolumn{1}{l|}{$(+,-)$} & multicolumn{1}{l|}{$360^circ-theta$} \ hline
& & & \ cline{1-3}
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $beta$ end{tabular}} & multicolumn{1}{l|}{$cos beta$} & multicolumn{1}{l|}{$sin beta$} & \ cline{1-3}
multicolumn{1}{|l|}{30$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{45$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{60$^circ$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & \ cline{1-3}
& & &
end{tabular}
end{table}
a) $sin 60^circ=dfrac{sqrt{3}}{2}$
b) $tan 45^circ=dfrac{sin 45^circ}{cos45^circ}=dfrac{sqrt{2}/2}{sqrt{2}/2}=1$
c) $csc 30^circ =dfrac{1}{sin 30^circ}=dfrac{1}{1/2}=2$
d) $sec 45^circ=dfrac{1}{cos 45^circ}=dfrac{1}{sqrt{2}/2}=dfrac{2}{sqrt{2}}=sqrt{2}$
b) 1
c) 2
d) $sqrt{2}$
Given that $sin alpha=dfrac{1}{2}$
$sin alpha=dfrac{text{opposite side}}{text{hypotenuse}}=dfrac{BD}{BC}$
$BC=dfrac{14}{sin alpha}=dfrac{14}{0.5}=28$
Using Pythagorean formula $c^2=a^2+b^2$
$CD=sqrt{BC^2-BD^2}=sqrt{28^2-14^2}=sqrt{588}=sqrt{196cdot 3}=14sqrt{3}$
For the smaller triangle
$sin 45^circ=dfrac{14}{AB}$
$AB=dfrac{14}{sin 45^circ}=dfrac{14}{sqrt{2}/2}=14sqrt{2}$
Using Pythagorean formula
$AD=sqrt{AB^2-AD^2}=sqrt{(14sqrt{2})^2-14^2}=14$
$$
AC=AD+CD=14+14sqrt{3}
$$
$cos 45^circ=dfrac{text{adjacent;side}}{text{hypotenuse}}=dfrac{1}{sqrt{2}}=dfrac{sqrt{2}}{2}$
$sin 45^circ=dfrac{text{opposite;side}}{text{hypotenuse}}=dfrac{1}{sqrt{2}}=dfrac{sqrt{2}}{2}$
$tan 45^circ =dfrac{sin theta}{cos theta}=dfrac{sqrt{2}/2}{sqrt{2}/2}=1$
$sin alpha=dfrac{1}{2}implies alpha=sin^{-1}(0.5)=30^circ$
$angle DBC=90^circ-alpha=90-60=30^circ$
$cos (angle DBC)=dfrac{sqrt{3}}{2}$
$sin (angle DBC)=dfrac{1}{2}$
$$
tan (angle DBC)=dfrac{1/2}{sqrt{3}/2}=dfrac{1}{sqrt{3}}=dfrac{sqrt{3}}{3}
$$
$AC=14+14sqrt{3}$
$AD=14$
$BC=28$
$CD=14sqrt{3}$
b) $cos angle A=dfrac{sqrt{2}}{2}$ ; $sin angle A=dfrac{sqrt{2}}{2}$ ; $tan angle A=1$
$cos(angle DBC)=dfrac{sqrt{3}}{2}$ ; $sin (angle DBC)=dfrac{1}{2}$ ; $tan (angle DBC)=dfrac{sqrt{3}}{3}$
1) If $theta$ is within the interval $0leq thetaleq 360^circ$, proceed to step 2. If not, find a coterminal angle $alpha$ within the range using the formula
coterminal angle $alpha=theta+360^circ cdot n$ where $n$ is an integer.
2) Determine which quadrant does the terminal point of $theta$ lie. Based on the quadrant, you can find the reference acute angle $beta$ according to the table below.
3) Evaluate the value of the trigonometric function based on the reference acute angle. You should remember its value for special angles such as $30^circ$, $45^circ$ and $60^circ$.
4) Determine the sign of the trigonometric function based on its quadrant.
center
defarraystretch{2.4}%
begin{tabular}{llll}
hline
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}principal angle;$theta$end{tabular}} & multicolumn{1}{l|}{Quadrant} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}sign $(cos theta, sin theta)$end{tabular}} & multicolumn{1}{l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $beta$end{tabular}} \ hline
multicolumn{1}{|l|}{$0< theta<90^circ$} & multicolumn{1}{l|}{I} & multicolumn{1}{l|}{$(+,+)$} & multicolumn{1}{l|}{$theta$} \ hline
multicolumn{1}{|l|}{$90^circ <theta < 180^circ$} & multicolumn{1}{l|}{II} & multicolumn{1}{l|}{$(-,+)$} & multicolumn{1}{l|}{$180^circ-theta$} \ hline
multicolumn{1}{|l|}{$180^circ <theta < 270^circ$} & multicolumn{1}{l|}{III} & multicolumn{1}{l|}{$(-,-)$} & multicolumn{1}{l|}{$theta-180^circ$} \ hline
multicolumn{1}{|l|}{$270^circ < theta <360^circ$} & multicolumn{1}{l|}{IV} & multicolumn{1}{l|}{$(+,-)$} & multicolumn{1}{l|}{$360^circ-theta$} \ hline
& & & \ cline{1-3}
multicolumn{1}{|l|}{begin{tabular}[c]{@{}l@{}}reference acute angle $beta$ end{tabular}} & multicolumn{1}{l|}{$cos beta$} & multicolumn{1}{l|}{$sin beta$} & \ cline{1-3}
multicolumn{1}{|l|}{30$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{45$^circ$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{2}}{2}$} & \ cline{1-3}
multicolumn{1}{|l|}{60$^circ$} & multicolumn{1}{l|}{$dfrac{1}{2}$} & multicolumn{1}{l|}{$dfrac{sqrt{3}}{2}$} & \ cline{1-3}
& & &
end{tabular}
end{table}
with reference angle $beta=180^circ-120^circ=60^circ$
$sin beta=sin 60^circ=dfrac{sqrt{3}}{2}$
$sin theta>0$ in QI and QII
Therefore, another value of $theta$ would be in QI
$$
theta=60^circ
$$
with reference angle $beta=225^circ-180^circ=45^circ$
$cos beta=cos 45^circ=dfrac{sqrt{2}}{2}$
$cos theta<0$ in QIII and QII
Therefore, another value of $theta$ would be in QII
In QII: $theta=180^circ-beta=180^circ-45^circ=135^circ$
with reference angle $beta=360^circ-330^circ=30^circ$
$tan beta=tan 30^circ=dfrac{1/2}{sqrt{3}/2}=dfrac{1}{sqrt{3}}$
$tantheta<0$ in QIV and QII
Therefore, another value of $theta$ would be in QII
In QII: $theta=180-beta=180-30=150^circ$
with reference angle $beta=360^circ-300^circ=60^circ$
$cosbeta=cos 60^circ=dfrac{1}{2}$
$tantheta>0$ in QI and QIV
Therefore, another value of $theta$ would be in QI
In QI: $theta=beta=60^circ$
(ii)
a) $theta=60^circ$
b) $theta=135^circ$
c) $theta=150^circ$
d) $theta=60^circ$
$r^2=x^2+y^2implies r=sqrt{(-9)^2+4^2}=sqrt{97}$
We can obtain $beta$ using sine
$sin beta = dfrac{text{opposite side}}{text{hypotenuse}}=dfrac{4}{sqrt{97}}$
$beta=sin^{-1}left(dfrac{4}{sqrt{97}}right)=24^circ$
c) Since $theta$ is in QII,
$theta=180^circ-beta=180^circ-24^circ$
$theta=156^circ$
b) $beta=24^circ$
c) $theta=156^circ$
Within $0^circ leq thetaleq 360^circ$, $theta$ can only have to possible values.
Thus, having three angles is impossible and Jeff is wrong.
In fact, the only possible angles are
QI: $theta=cos^{-1}left(dfrac{4}{5}right)=37^circ$
QIV: $theta=360^circ-37^circ=323^circ$
We know that if $(x,y)$ is the terminal point in a unit circle,
then $tan theta=dfrac{y}{x}$ and $cos theta=x$
To find the other trigonometric ratios, use the Pythagorean formula with $r=1$.
$x^2+y^2=1$
Divide both sides by $x^2$
$1+left(dfrac{y}{x}right)^2=left(dfrac{1}{x}right)^2$
$1+(tan theta)^2=left(dfrac{1}{cos theta}right)^2$
$dfrac{1}{cos theta}=pmsqrt{1+left(-dfrac{15}{8}right)^2}=pmsqrt{dfrac{289}{64}}=pmdfrac{17}{8}$
In QII, $cos theta0$, thus,
$sin theta=dfrac{15}{17}$
$sec theta=dfrac{1}{cos theta}=-dfrac{17}{8}$
$csctheta=dfrac{1}{sin theta}=dfrac{17}{15}$
$cot theta=dfrac{1}{tantheta}=-dfrac{8}{15}$
In QII, the principal angle is $theta=180^circ-beta$
$$
theta=180^circ-62^circ=118^circ
$$
b) $theta=118^circ$
1) Find the reference acute angle $beta$ using inverse trigonometric function as\ \
$f(theta)=cimplies beta=f^{-1}(|c|)$\\
2) Based on the sign of $c$, determine the possible quadrants for $theta$ within the given range.\\
3) Find the principal angle $theta$ on those quadrants that has reference acute angle of $beta$
begin{table}[]
defarraystretch{1.4}%
begin{tabular}{|l|l|l|l|l|}
hline
& QI & QII & QIII & QIV\ hline
sine & $+$ & $+$ & $-$ & $-$ \ hline
cosine & $+$ & $-$ & $-$ & $+$ \ hline
tangent & $+$ & $-$ & $+$ & $-$ \ hline
principal angle $theta$ & $;;;;beta;;;;$ & $180^circ-beta$ & $180^circ+beta$ & $360^circ-beta$ \ hline
end{tabular}
end{table}
$sin theta<0$ in QIII and QIV.
QIII: $theta=180^circ+beta=180^circ+55^circ=235^circ$
QIV: $theta=360^circ-beta=360^circ-55^circ=305^circ$
Therefore
$$
theta=235^circ,;305^circ
$$
theta=235^circ,;305^circ
$$
1) $sin theta$ and $cos theta$ must be within $-1leq f(theta)leq1$
2) $csctheta$ and $sectheta$ can NOT take values within $-1<f(theta)<1$.
3) $tantheta$ and $cot theta$ can take any value in $bold{R}$.
a) $cos theta=2.3151$
f) $sin theta=2.3151$
is FALSE because these ratios cannot be more than 1.