Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 274: Getting Started

Exercise 1
Step 1
1 of 3
Pythagorean theorem states that for a right triangle with hypotenuse $c$ and legs $a$ and $b$, then

$c^2=a^2+b^2$

Exercise scan

Step 2
2 of 3
In the following, simply substitute the given information to the formula.

a) $c=sqrt{12^2+5^2}implies c=sqrt{169}=13$

b) $11^2=f^2+8^2implies f=sqrt{11^2-8^2}=sqrt{57}$

Result
3 of 3
a) $13$

b) $sqrt{57}$

Exercise 2
Step 1
1 of 4
Remember the following:

$sin theta = dfrac{text{opposite side}}{text{hypotenuse}}$

$cos theta = dfrac{text{adjacent side}}{text{hypotenuse}}$

$tan theta = dfrac{text{opposite side}}{text{adjacent side}}$

$$
color{white} ddd
$$

Exercise scan

Step 2
2 of 4
a) Refer to $angle A$,

opposite side = 5

adjacent side = 12

hypotenuse = $sqrt{5^2+12^2}=13$

$sin A=dfrac{5}{13}$

$cos A=dfrac{12}{13}$

$tan A=dfrac{5}{12}$

Step 3
3 of 4
b) Refer to $angle D$,

opposite side = 8

hypotenuse = $11$

adjacent side = $sqrt{11^2-8^2}=sqrt{57}$

$sin D=dfrac{8}{11}$

$cos D=dfrac{sqrt{57}}{11}$

$tan D=dfrac{8}{sqrt{57}}$

Result
4 of 4
a) $sin A=dfrac{5}{13}$ ; $cos A=dfrac{12}{13}$ ; $tan A=dfrac{5}{12}$

b) $sin D=dfrac{8}{11}$; $cos D=dfrac{sqrt{57}}{11}$ ; $tan D=dfrac{8}{sqrt{57}}$

Exercise 3
Step 1
1 of 4
Remember the following:

$sin theta = dfrac{text{opposite side}}{text{hypotenuse}}$

$cos theta = dfrac{text{adjacent side}}{text{hypotenuse}}$

$tan theta = dfrac{text{opposite side}}{text{adjacent side}}$

$$
color{white} ddd
$$

Exercise scan

Step 2
2 of 4
a) Refer to $angle B$

opposite side = 12

adjacent side = 5

$tan (angle B)=dfrac{12}{5}$

$$
angle B=tan^{-1}left(dfrac{12}{5}right)approx 67.38^circ
$$

Step 3
3 of 4
b) Refer to $angle F$

adjacent side = 8

hypotenuse = 11

$cos (angle F)=dfrac{8}{11}$

$$
angle F=cos^{-1}left(dfrac{8}{11}right)approx43.34^circ
$$

Result
4 of 4
a) $67^circ$

b) $43^circ$

Exercise 4
Step 1
1 of 2
Use your calculator to evaluate the given expression to the nearest thousandth (3 digits after decimal point). Be sure to set your calculator to DEGREE mode.

a) $sin 31^circapprox 0.515$

b) $cos 70^circapprox 0.342$

Result
2 of 2
a) 0.515

b) 0.342

Exercise 5
Step 1
1 of 3
Here, we need to use our calculator to find $theta$ that satisfies the given equation. We will use the inverse trigonometric functions to do this. Use the fact that
$$
begin{equation*}f(theta)=aiff theta =f^{-1}(a)end{equation*}
$$

Be sure to set your calculator to DEGREE mode.

Step 2
2 of 3
a) $theta=cos^{-1}(0.3312)=71^circ$

b) $theta=sin^{-1}(0.7113)=45^circ$

c) $theta=tan^{-1}(1.1145)=48^circ$

Result
3 of 3
a) $71^circ$

b) $45^circ$

c) $48^circ$

Exercise 6
Step 1
1 of 4
Remember the following:

$sin theta = dfrac{text{opposite side}}{text{hypotenuse}}$

$cos theta = dfrac{text{adjacent side}}{text{hypotenuse}}$

$$
tan theta = dfrac{text{opposite side}}{text{adjacent side}}
$$

$$
color{white} ddd
$$

Exercise scan

Step 2
2 of 4
Exercise scan
Step 3
3 of 4
[begin{gathered}
{text{The height of the tower is the sum of the }} hfill \
{text{opposite sides with respect to the angle of elevation}} hfill \
{text{and angle of depression}}{text{.}} hfill \
hfill \
tan {32^ circ } = frac{j}{{40}} hfill \
j = 40tan {32^ circ } approx 24.995 hfill \
hfill \
tan {42^ circ } = frac{k}{{40}} hfill \
k = 40tan {32^ circ } approx 36.016 hfill \
hfill \
x = j + k = 24.995 + 36.016 approx boxed{61{text{m}}} hfill \
hfill \
{text{The tower is 61 m high}} hfill \
end{gathered} ]
Result
4 of 4
$61$ m
Exercise 7
Step 1
1 of 3
Exercise scan
Step 2
2 of 3
[begin{gathered}
{text{Remember that}} hfill \
hfill \
tan theta = frac{{{text{opposite side}}}}{{{text{adjacent side}}}} hfill \
hfill \
{text{Notice that we can form two similar triangles}}{text{.}} hfill \
{text{We shall evaluate tan}}theta {text{ for both triangles}} hfill \
hfill \
{text{small triangle: }}tan theta = frac{{1.3}}{{1.8}} hfill \
{text{big triangle: }}tan theta = frac{x}{{35.2}} hfill \
hfill \
{text{Equate both }}tan theta hfill \
frac{{1.3}}{{1.8}} = frac{x}{{35.2}} hfill \
hfill \
x = 35.2left( {frac{{1.3}}{{1.8}}} right) approx boxed{25.42{text{ m}}} hfill \
hfill \
{text{The tower is 25}}{text{.42 m high}}{text{.}} hfill \
end{gathered} ]
Result
3 of 3
$25.42$ m
Exercise 8
Step 1
1 of 2
If the given information is sufficient to solve the triangle (3 independent information about the triangle), use the following flow chart to determine whether you can use sine law or not.Exercise scan
Result
2 of 2
Assuming the given information is sufficient to solve the triangle, if there is a given side and its opposite angle and vice versa, you can use sine law. Otherwise, you cannot use sine law.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New