Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 270: Chapter Self-Test

Exercise 1
Step 1
1 of 4
a) By just looking at the function $f(x)$, we can see that there is a variable in the exponent, hence, it is an exponential function.
Step 2
2 of 4
b) The table of values can be obtained by substituting some values of $x$ to $f(x)$. Since the ratio of first differences is constant, it is exponential.\\

begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $f(x)$ & First Differences & Ratio of First Differences \ hline
$-1.5$ & 3.5 & & \ hline
$-1$ & 0.5 & $0.5-3.5=-3$ & \ hline
$-0.5$ & $-8.5$ & $-8.5-0.5=-9$ & $-9div -3=3$ \ hline
$0$ & $-35.5$ & $-35.5-(-8.5)=-27$ & $-27div -9=3$ \ hline
$1$ & $-116.5$ & $-116.5-(-35.5)=-81$ & $-81div -27=3$ \ hline
end{tabular}
end{table}

Step 3
3 of 4
c) The base function is $g(x)=3^x$ and the objective function can be rewritten as

$f(x)=-frac{1}{2}left(3^{2(x+2)}right)+5$

(1) Reflect in the $x$-axis $implies y=-3^x$

(2) Horizontally compress by a factor of $dfrac{1}{2}implies y=-3^{2x}$

(3) Vertically compress by a factor of 2 $dfrac{1}{2}implies y=-dfrac{1}{2}left(3^{2x}right)$

(4) Horizontally translate 2 units to the left $y=-dfrac{1}{2}left(3^{2(x+2)}right)$

(5) Vertically translate 5 units upward $y=-dfrac{1}{2}left(3^{2(x+2)}right)+5$

The asymptote is $y=5$

Exercise scan

Result
4 of 4
a) There is a variable in the exponent so it must be an exponential function.

b) If the ratios of the first differences is constant, it is exponential.

c) Perform the following transformations:

(1) Reflect in the $x$-axis

(2) Horizontally compress by a factor of $dfrac{1}{2}$

(3) Vertically compress by a factor of 2

(4) Horizontally translate 2 units to the left

(5) Vertically translate 5 units upward

Exercise 2
Step 1
1 of 3
a) $(-5)^{-3}=dfrac{1}{(-5)^3}$

$=dfrac{1}{-5^3}$

$$
=-dfrac{1}{125}
$$

Remember the following rules:

$x^{-a}=dfrac{1}{x^a}$

$(-x)^a = x^a$ if $a$ is even

$(-x)^a=-x^a$ if $a$ is odd

Step 2
2 of 3
b) $27^{frac{2}{3}}=(3^3)^{frac{2}{3}}$

$$
=3^2=9
$$

$$
(x^a)^b=x^{ab}
$$
Result
3 of 3
a) $-dfrac{1}{125}$

b) $9$

Exercise 3
Step 1
1 of 5
[begin{gathered}
{text{a)}}{text{ }}{left( { – 3{x^2}y} right)^3}{left( { – 3{x^{ – 3}}y} right)^2} hfill \
hfill \
= left[ {{{left( { – 3} right)}^3}{x^{2left( 3 right)}}{y^3}} right]left[ {{{left( { – 3} right)}^2}{x^{ – 3left( 2 right)}}{y^2}} right] hfill \
hfill \
= left( {-27{x^6}{y^3}} right)left( {9{x^{ – 6}}{y^2}} right) hfill \
hfill \
= -243{x^{6 – 6}}{y^{3 + 2}} hfill \
hfill \
= -243{x^0}{y^5} hfill \
hfill \
= -243{y^5} hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 2
2 of 5
[begin{gathered}
{text{b) }}frac{{{{left( {5{a^{ – 1}}{b^2}} right)}^{ – 2}}}}{{125{a^5}{b^{ – 3}}}} hfill \
hfill \
= frac{{{5^{ – 2}}{a^2}{b^{ – 4}}}}{{125{a^5}{b^{ – 3}}}} hfill \
hfill \
= frac{{{a^{2 – 5}}{b^{ – 4 -(- 3)}}}}{{{5^2}left( {125} right)}} hfill \
hfill \
= frac{{{a^{ – 3}}{b^{ – 1}}}}{{left( {25} right)left( {125} right)}} hfill \
hfill \
= frac{1}{{3125{a^3}{b}}} hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$x^{-a}=dfrac{1}{x^a}$

Step 3
3 of 5
[begin{gathered}
{text{c) }}sqrt[5]{{frac{{1024{{left( {{x^{ – 1}}} right)}^{10}}}}{{{{left( {2{x^{ – 3}}} right)}^5}}}}} hfill \
hfill \
= {left[ {frac{{1024{{left( {{x^{ – 1}}} right)}^{10}}}}{{{{left( {2{x^{ – 3}}} right)}^5}}}} right]^{frac{1}{5}}} hfill \
hfill \
= {left( {{text{ }}frac{{1024{x^{ – 10}}}}{{{2^5}{x^{ – 15}}}}} right)^{frac{1}{5}}} hfill \
hfill \
= {text{ }}{left( {frac{{1024{x^{ – 10 – left( { – 15} right)}}}}{{32}}} right)^{frac{1}{5}}} hfill \
hfill \
= {left( {32{x^5}} right)^{frac{1}{5}}} = {left( {{2^5}{x^5}} right)^{frac{1}{5}}} hfill \
hfill \
= 2x hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 4
4 of 5
[begin{gathered}
{text{d) }}frac{{{{left( {8{x^6}{y^{ – 3}}} right)}^{frac{1}{3}}}}}{{{{left( {2xy} right)}^3}}} hfill \
hfill \
= frac{{{8^{frac{1}{3}}}{x^2}{y^{ – 1}}}}{{{2^3}{x^3}{y^3}}} hfill \
hfill \
= frac{{{{left( {{2^3}} right)}^{frac{1}{3}}}{x^{2 – 3}}{y^{ – 1 – 3}}}}{{{2^3}}} hfill \
hfill \
= frac{{2{x^{ – 1}}{y^{ – 4}}}}{8} hfill \
hfill \
= frac{1}{{4x{y^4}}} hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Result
5 of 5
a) $-243y^5$

b) $dfrac{1}{3125a^3b}$

c) $2x$

d) $dfrac{1}{4xy^4}$

Exercise 4
Step 1
1 of 3
$bold{Concept:}$ The general exponential model is

$A(n)=A_0 (1+r)^{n}$

$A(n)$ is the amount/population after $n$ periods

$A_0$ is the initial amount

$r$ is the growth rate $(text{if} ;r>0)$ or decay rate $(text{if}; r<0)$

Step 2
2 of 3
$bold{Solution:}$

$bold{a);;}$ The decay rate is $3.6%$ so $r=-0.036$ and the initial value is 100. If $I$ is the intensity and $n$ is the number of gels added, then the model would be

$I=100[1+(-0.036)]^nimplies boxed{I=100(0.964)^n}$

$bold{b);;}$ We shall find the value of $I$ when $n=3$

$I=100(0.964)^3=boxed{89.6%}$

$bold{c);;}$ It is exponential because the independent variable is in the exponent. It is an example of decay because the function decreases as $n$ increases.

Result
3 of 3
a) $I=100(0.964)^n$

b) $89.6%$

c) The independent variable is in the exponent and the function is decreasing as $n$ increases.

Exercise 5
Step 1
1 of 4
$bold{Concept:}$ The general exponential model is

$A(n)=A_0 (1+r)^{n}$

$A(n)$ is the amount/population after $n$ periods

$A_0$ is the initial amount

$r$ is the growth rate $(text{if} ;r>0)$ or decay rate $(text{if}; r<0)$

Step 2
2 of 4
$bold{Solution:}$

$bold{a);;}$ The initial population $(at 1990)$ is $P_0=2times 10^6$ and the growth rate is $r=4%=0.04$. Using the exponential model, the equation is

$$
begin{equation*} P=P_0(1+r)^nend{equation*}
$$

$$
begin{equation*}P=(2times 10^6)(1.04)^nend{equation*}
$$

Step 3
3 of 4
$bold{b);;}$ The population will double when $P=2(2times10^6)=4times10^6$. We shall find $n$ when $P=4times 10^6$.

$4times 10^6=2times10^6(1.04)^n$

$2=1.04^n$

By graphical approach, we get $n=17.67approx 18$

Therefore, the population will have doubled 18 years after 1990 which is year 2008.

Exercise scan

Result
4 of 4
a) $P=(2times10^6)(1.04^n)$

b) 18 years after 1990 or in the year 2008

Exercise 6
Step 1
1 of 2
The given options all have a base function of $y=3^x$

From the given graph, it is sharply decreasing as $x$ values increases. This indicates that the base function was reflected in the $x$-axis, that is $f(x)to -f(x)$. From this information, we can eliminate options (a) and (b) because both are reflected in the $y$-axis. We can also observe that it has asymptote at $y=-2$. Option (c) would have an asymptote at $y=0$ so the only possible answer is option (d).

Result
2 of 2
option (d)
Exercise 7
Step 1
1 of 3
Remember that the root of a negative number is only defined if the index is odd. Even roots of negative numbers are not real numbers.
Step 2
2 of 3
$$
{a^{frac{1}{n}}} = left{ {begin{array}{c}
{ – {a^{frac{1}{n}}}{text{ if }}n{text{ is odd}}} \
{{text{undefined if }}n{text{ is even or }}n = 0}
end{array}} right.
$$
Result
3 of 3
$nneq 0$ and $n$ must be odd
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New