Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Page 267: Practice Questions

Exercise 1
Step 1
1 of 3
a) Remember that $x^{-2}=dfrac{1}{x^2}$

If $x>1$, $x^2$ is always greater than $dfrac{1}{x^2}$

For example when $x=2$

$x^2=4$ and $x^{-2}=dfrac{1}{4}$

Step 2
2 of 3
b) Yes. $x^{-2}>x^2$ when $|x|<1$ such that $xneq 0$.

A number divided by something that has absolute value of less than 1 will be greater than the original number.

For example when $x=dfrac{1}{2}$

$x^{-2}=dfrac{1}{x^2}=dfrac{1}{(1/2)^2}=4$

$x^2=left(dfrac{1}{2}right)^2=dfrac{1}{4}$

Result
3 of 3
a) $x^2>dfrac{1}{x^2}$ when $|x|>1$

b) $dfrac{1}{x^2}>x^2$ when $|x|<1$ and $xneq 0$

Exercise 2
Step 1
1 of 7
a) $(-7)^3(-7)^{-4}=(-7)^{3+(-4)}$

$$
=(-7)^{-1}=dfrac{1}{-7}=-dfrac{1}{7}
$$

Use the following rules:

$x^acdot x^b=x^{a+b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 2
2 of 7
b) $dfrac{(-2)^8}{(-2)^3}=(-2)^{8-3}=(-2)^5=-32$
$dfrac{x^a}{x^b}=x^{a-b}$

$(-x)^n$ = $-x^n$ if $n$ is odd

$(-x)^n=x^n$ if $n$ is even

for $n>1$

Step 3
3 of 7
c) $dfrac{(5)^{-3}(5)^6}{5^{3}}=dfrac{5^{-3+6}}{5^3}$

$$
=dfrac{5^3}{5^3}=5^{3-3}=5^0=1
$$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 4
4 of 7
d) $dfrac{4^{-10}(4^{-3})^6}{(4^{-4})^8}$

$=dfrac{4^{-10}(4^{-18})}{(4^{-32})}$

$=dfrac{4^{-10+(-18)}}{4^{-32}}$

$=4^{-28-(-32)}$

$=4^{-28+32}$

$$
=4^4=256
$$

$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
e) $(11)^9left(dfrac{1}{11}right)^7=(11)^{9}(11)^{-7}$

$$
=11^{9+(-7)}=11^2=121
$$

$dfrac{1}{x^a}=x^{-a}$

$$
x^acdot x^b=x^{a+b}
$$

Step 6
6 of 7
f) $left(dfrac{(-3)^7(-3)^4}{(-3^4)^3}right)^{-3}$

$$
=left(dfrac{(-3)^{7+4}}{(-3)^{12}} right)^{-3}
$$

$=left( dfrac{(-3)^{11}}{(-3)^{12}}right)^{-3}$

$=left((-3)^{11-12}right)^{-3}$

$=left((-3)^{-1}right)^{-3}$

$=(-3)^{(-1)(-3)}$

$=(-3)^3=-3^3$

$$
=-27
$$

$x^acdot x^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

$(x^a)^b=x^{ab}$

$(-x)^n$ = $-x^n$ if $n$ is odd

$(-x)^n=x^n$ if $n$ is even

for $n>1$

Result
7 of 7
a) $7^{-1}=-dfrac{1}{7}$

b) $(-2)^5=-32$

c) $5^0=1$

d) $4^4=256$

e) $11^2=121$

f) $(-3)^3=-27$

Exercise 3
Step 1
1 of 2
Remember that $sqrt[m]{a^n}iff a^{frac{n}{m}}$

a) $sqrt[3]{x^7}=x^{frac{7}{3}}$

b) $y^{frac{8}{5}}=sqrt[5]{y^8}$

c) $(sqrt{p})^{11}=(p^{frac{1}{2}})^{11}=p^{frac{11}{2}}$

d) $m^{1.25}=m^{1+frac{1}{4}}=m^{frac{5}{4}}=sqrt[4]{m^5}$

Result
2 of 2
a) $x^{frac{7}{3}}$

b) $sqrt[5]{y^8}$

c) $p^{frac{11}{2}}$

d) $sqrt[4]{m^5}$

Exercise 4
Step 1
1 of 3
In the following, remember the following rules:

$left(dfrac{x}{y}right)^{-a}=left(dfrac{y}{x}right)^a=dfrac{y^a}{x^a}$

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$$
sqrt[m]{a^m}=a
$$

Step 2
2 of 3
[begin{gathered}
{text{a) }}{left( {frac{2}{5}} right)^{ – 3}} = {left( {frac{5}{2}} right)^3} = frac{{{5^3}}}{{{2^3}}} = frac{{125}}{8} hfill \
hfill \
{text{b) }}{left( {frac{{16}}{{225}}} right)^{ – 0.5}} = {left( {frac{{225}}{{16}}} right)^{0.5}} = {left( {frac{{{{15}^2}}}{{{4^2}}}} right)^{0.5}} = frac{{15}}{4} hfill \
hfill \
{text{c) }}frac{{{{left( {81} right)}^{ – 0.25}}}}{{sqrt[3]{{ – 125}}}} = frac{{{{left( {{3^4}} right)}^{ – frac{1}{4}}}}}{{sqrt[3]{{{{left( { – 5} right)}^3}}}}} = frac{{{3^{ – 1}}}}{{ – 5}} = – frac{1}{{5left( 3 right)}} = – frac{1}{{15}} hfill \
hfill \
{text{d) }}{left( {sqrt[3]{{ – 27}}} right)^4} = {left( {sqrt[3]{{{{left( { – 3} right)}^3}}}} right)^4} = {left( { – 3} right)^4} = 81 hfill \
hfill \
{text{e) }}left( {sqrt[5]{{ – 32}}} right){left( {sqrt[6]{{64}}} right)^5} = left( {sqrt[5]{{{{left( { – 2} right)}^5}}}} right){left( {sqrt[6]{{{2^6}}}} right)^5} hfill \
= left( { – 2} right){left( 2 right)^5} = left( { – 2} right)left( {32} right) = – 64 hfill \
end{gathered} ]
Result
3 of 3
a) $dfrac{125}{8}$

b) $dfrac{15}{4}$

c) $-dfrac{1}{15}$

d) $81$

e) $-64$

Exercise 5
Step 1
1 of 7
a) $a^{frac{3}{2}}(a^{-frac{3}{2}})=a^{frac{3}{2}-frac{3}{2}}=a^0$
Use the following rules:

$$
(x^a)(x^b)=x^{a+b}
$$

Step 2
2 of 7
b) $dfrac{b^{0.8}}{b^{-0.2}}=b^{0.8-(-0.2)}=b^{1}=b$
$$
dfrac{x^a}{x^b}=x^{a-b}
$$
Step 3
3 of 7
c) $dfrac{cleft( c^{frac{5}{6}} right)}{c^2}$

$=dfrac{c^{1+frac{5}{6}}}{c^2}$

$=dfrac{c^{frac{11}{6}}}{c^2}$

$=c^{frac{11}{6}-2}$

$=c^{frac{11}{6}-frac{12}{6}}$

$=c^{-frac{1}{6}}$

$$
=dfrac{1}{c^{frac{1}{6}}}
$$

$(x^a)(x^b)=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 4
4 of 7
[begin{gathered}
{text{d) }}frac{{{d^{ – 5}}{d^{frac{{11}}{2}}}}}{{{{left( {{d^{ – 3}}} right)}^2}}} = frac{{{d^{ – 5 + frac{{11}}{2}}}}}{{{d^{left( { – 3} right)left( 2 right)}}}} hfill \
hfill \
= frac{{{d^{ – frac{{10}}{2} + frac{{11}}{2}}}}}{{{d^{ – 6}}}} = frac{{{d^{frac{1}{2}}}}}{{{d^{ – 6}}}} hfill \
hfill \
= {d^{frac{1}{2} – left( { – 6} right)}} = {d^{frac{1}{2} + 6}} hfill \
hfill \
= {d^{frac{1}{2} + frac{{12}}{2}}} = {d^{frac{{13}}{2}}} hfill \
hfill \
end{gathered} ]
$(x^a)(x^b)=x^{a+b}$

$(x^a)^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
[begin{gathered}
{text{e) } left[ {{{left( {{e^{ – 2}}} right)}^{frac{7}{2}}}} right]^{ – 2}} hfill \
hfill \
= {e^{left( { – 2} right)left( {frac{7}{2}} right)left( { – 2} right)}} hfill \
hfill \
= {e^{14}} hfill \
end{gathered} ]
$$
left[(x^a)^bright]^c=x^{abc}
$$
Step 6
6 of 7
[begin{gathered}
{text{f) }left[ {{{left( {{f^{ – frac{1}{6}}}} right)}^{frac{6}{5}}}} right]^{ – 1}} hfill \
hfill \
= {f^{left( { – frac{1}{6}} right)left( {frac{6}{5}} right)left( { – 1} right)}} hfill \
hfill \
= {f^{frac{1}{5}}} hfill \
end{gathered} ]
$$
left[(x^a)^bright]^c=x^{abc}
$$
Result
7 of 7
a) $a^0$

b) $b^1$

c) $dfrac{1}{c^{frac{1}{6}}}$

d) $d^{frac{13}{2}}$

e) $e^{14}$

f) $f^{frac{1}{5}}$

Exercise 6
Step 1
1 of 2
We shall find a counterexample using perfect squares.

Let $a=5^2$ and $b=6^2$

$sqrt{5^2+6^2}=sqrt{25+36}=sqrt{61}approx 7.81$

$sqrt{a}+sqrt{b}=sqrt{5^2}+sqrt{6^2}=5+6=11$

This proves that $sqrt{a+b} neq sqrt{a}+sqrt{b}$

Result
2 of 2
Let $a=5^2$ and $b=6^2$

$sqrt{5^2+6^2}=sqrt{25+36}=sqrt{61}approx 7.81$

$sqrt{a}+sqrt{b}=sqrt{5^2}+sqrt{6^2}=5+6=11$

This proves that $sqrt{a+b} neq sqrt{a}+sqrt{b}$

Exercise 7
Step 1
1 of 7
[begin{gathered}
{text{a) }}{left( {5x} right)^2}{left( {2x} right)^3} = left( {{5^2}{x^2}} right)left( {{2^3}{x^3}} right) hfill \
hfill \
= left( {25{x^2}} right)left( {8{x^3}} right) = 200{x^{2 + 3}} = 200{x^5} hfill \
hfill \
{text{when }}x = – 2 hfill \
200{x^5} = 200{left( { – 2} right)^5} = 200left( { – 32} right) = – 6400 hfill \
end{gathered} ]
Use the following rules:

$(xy)^a=x^ay^a$

$x^acdot x^b=x^{a+b}$

$(-x)^a=x^a$ if $a$ is even

$(-x)^a=-x^a$ if $a$ is odd

Step 2
2 of 7
[begin{gathered}
{text{b) }}frac{{8{m^{ – 5}}}}{{{{left( {2m} right)}^{ – 3}}}} = frac{{8{m^{ – 5}}}}{{{2^{ – 3}}{m^{ – 3}}}} hfill \
hfill \
= 8left( {{2^3}} right)left( {{m^{ – 5 – left( { – 3} right)}}} right) = 8left( 8 right){m^{ – 2}} = frac{{64}}{{{m^2}}} hfill \
hfill \
{text{when }}m = 4 hfill \
frac{{64}}{{{m^2}}} = frac{{64}}{{{4^2}}} = frac{{64}}{{16}} = 4 hfill \
end{gathered} ]
$(xy)^a=x^ay^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 3
3 of 7
[begin{gathered}
{text{c) }}frac{{2wleft( {3{w^{ – 2}}} right)}}{{{{left( {2w} right)}^2}}} = {left( {2w} right)^{1 – 2}}left( {3{w^{ – 2}}} right) hfill \
hfill \
= {left( {2w} right)^{ – 1}}left( {3{w^{ – 2}}} right) = left( {{2^{ – 1}}} right)left( 3 right){w^{ – 1 + left( { – 2} right)}} hfill \
hfill \
= frac{3}{2}{w^{ – 3}} = frac{6}{{{w^3}}} hfill \
hfill \
{text{when }}w = – 3 hfill \
frac{3}{{2{w^3}}} = frac{3}{{2{{left( { – 3} right)}^3}}} = frac{3}{{2left( { – 27} right)}} = frac{3}{{2left( { – 9 times 3} right)}} = – frac{1}{{18}} hfill \
end{gathered} ]
$(xy)^a=x^ay^a$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 4
4 of 7
[begin{gathered}
{text{d) }}frac{{{{left( {9y} right)}^2}}}{{{{left( {3{y^{ – 1}}} right)}^3}}} = frac{{{9^2}{y^2}}}{{{3^3}{y^{ – 3}}}} hfill \
hfill \
= frac{{81}}{{27}}{y^{2 – left( { – 3} right)}} = 3{y^5} hfill \
hfill \
{text{when }}y = – 2 hfill \
3{y^5} = 3{left( { – 2} right)^5} = 3left( { – 32} right) = – 96 hfill \
end{gathered} ]
$(xy)^a=x^ay^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
[begin{gathered}
{text{e) }}{left( {6{{left( {{x^{ – 4}}} right)}^3}} right)^{ – 1}} = frac{1}{{6{{left( {{x^{ – 4}}} right)}^3}}} hfill \
hfill \
= frac{1}{{6{x^{ – 12}}}} = frac{1}{6}{x^{12}} hfill \
hfill \
{text{when }}x = – 2 hfill \
frac{1}{6}{x^{12}} = frac{1}{6}{left( { – 2} right)^{12}} = frac{1}{6}left( {4096} right) = frac{{2048}}{3} hfill \
end{gathered} ]
$x^{-a}=dfrac{1}{x^a}$

$(x^a)^b=x^{ab}$

Step 6
6 of 7
[begin{gathered}
{text{f) }}frac{{{{left( { – 2{x^{ – 2}}} right)}^3}{{left( {6x} right)}^2}}}{{2{{left( { – 3{x^{ – 1}}} right)}^3}}} = frac{{{{left( { – 2} right)}^3}left( {{x^{ – 6}}} right)left( {{6^2}} right)left( {{x^2}} right)}}{{2left( { – {3^3}} right){{left( {{x^{ – 1}}} right)}^3}}} hfill \
hfill \
= frac{{left( { – 8} right)left( {36} right){x^{ – 6 + 2}}}}{{2left( { – 27} right){x^{ – 3}}}} = frac{{left( { – 8} right)left( {9 times 2 times 2} right){x^{ – 6 + 2}}}}{{2left( { – 9 times 3} right){x^{ – 3}}}} hfill \
hfill \
= frac{{left( 8 right)left( 2 right){x^{ – 4}}}}{{3{x^{ – 3}}}} = frac{{16}}{3}{x^{ – 4 – left( { – 3} right)}} = frac{{16}}{3}{x^{ – 1}} = frac{{16}}{{3x}} hfill \
hfill \
{text{when }}x = frac{1}{2} hfill \
frac{{16}}{{3x}} = frac{{16}}{{3left( {frac{1}{2}} right)}} = frac{{16left( 2 right)}}{3} = frac{{32}}{3} hfill \
end{gathered} ]
$(xy)^a=x^ay^a$

$x^acdot x^b=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$(-x)^a=x^a$ if $a$ is even

$(-x)^a=-x^a$ if $a$ is odd

Result
7 of 7
a) $200x^5=-6400$

b) $dfrac{64}{m^2}=4$

c) $dfrac{3}{2w^3}=-dfrac{1}{18}$

d) $3y^5=-96$

e) $dfrac{1}{6}x^{12}=dfrac{2048}{3}$

f) $dfrac{16}{3x}=dfrac{32}{3}$

Exercise 8
Step 1
1 of 7
[begin{gathered}
{text{a) }}sqrt[3]{{27{x^3}{y^9}}} = {left( {27{x^3}{y^9}} right)^{frac{1}{3}}} hfill \
hfill \
= {left( {{3^3}{x^3}{y^9}} right)^{frac{1}{3}}} = 3x{y^3} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

Step 2
2 of 7
[begin{gathered}
{text{b) }}sqrt {frac{{{a^6}{b^5}}}{{{a^8}{b^3}}}} = sqrt {{a^{left( {6 – 8} right)}}{b^{left( {5 – 3} right)}}} hfill \
hfill \
= sqrt {{a^{ – 2}}{b^2}} = {left( {{a^{ – 2}}{b^2}} right)^{frac{1}{2}}} hfill \
hfill \
= {a^{ – 1}}b = frac{b}{a} hfill \
end{gathered} ]
$dfrac{x^a}{x^b}=x^{a-b}$

$sqrt{a}=a^{frac{1}{2}}$

$(x^a)^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 3
3 of 7
[begin{gathered}
{text{c) }}frac{{{m^{frac{3}{2}}}{n^{ – 2}}}}{{{m^{frac{7}{2}}}{n^{ – frac{3}{2}}}}} = {m^{frac{3}{2} – frac{7}{2}}}{n^{ – 2 – left( { – frac{3}{2}} right)}} hfill \
hfill \
{m^{frac{{3 – 7}}{2}}}{n^{frac{{ – 4 + 3}}{2}}} = {m^{frac{{ – 4}}{2}}}{n^{ – frac{1}{2}}} hfill \
hfill \
= {m^{ – 2}}{n^{ – frac{1}{2}}} = frac{1}{{{m^2}{n^{frac{1}{2}}}}} hfill \
end{gathered} ]
$dfrac{x^a}{x^b}=x^{a-b}$

$(x^a)^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 4
4 of 7
[begin{gathered}
{text{d) }}frac{{sqrt[4]{{{x^{ – 16}}{{left( {{x^6}} right)}^{ – 6}}}}}}{{{{left( {{x^4}} right)}^{ – frac{{11}}{2}}}}} = frac{{sqrt[4]{{{x^{ – 16}}left( {{x^{ – 36}}} right)}}}}{{{x^{ – 22}}}} hfill \
hfill \
= frac{{sqrt[4]{{{x^{ – 16 + left( { – 36} right)}}}}}}{{{x^{ – 22}}}} = frac{{sqrt[4]{{{x^{ – 52}}}}}}{{{x^{ – 22}}}} hfill \
hfill \
= frac{{{{left( {{x^{ – 52}}} right)}^{frac{1}{4}}}}}{{{x^{ – 22}}}} = frac{{{x^{ – 13}}}}{{{x^{ – 22}}}} = {x^{ – 13 – left( { – 22} right)}} hfill \
hfill \
= {x^9} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$

$x^acdot x^b=x^{a+b}$

$sqrt[m]{x^n}=x^{frac{n}{m}}$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
[begin{gathered}
{text{e) }}{left[ {{{left( { – {x^{0.5}}} right)}^3}} right]^{ – 1.2}} = {left( { – {x^{frac{3}{2}}}} right)^{ – 1.2}} hfill \
hfill \
= {left( { – 1} right)^{ – 1.2}}{left( {{x^{frac{3}{2}}}} right)^{ – 1.2}} hfill \
hfill \
= {left( { – 1} right)^{ – frac{6}{5}}}{x^{ – 1.8}} = left( {frac{1}{{{{left( { – 1} right)}^{frac{6}{5}}}}}} right)left( {frac{1}{{{x^{1.8}}}}} right) hfill \
hfill \
= frac{1}{{{x^{1.8}}}} hfill \
end{gathered} ]
$(-x)^a=x^a$ if $a$ is even

$(-x)^a=-x^a$ if $a$ is odd

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$(-x)^{frac{a}{b}} = x^{frac{a}{b}}$ if $b$ is odd and $a$ is even

$(-x)^{frac{a}{b}} = -x^{frac{a}{b}}$ if both $a$ and $b$ are odd

$(-x)^{frac{a}{b}}=text{undefined}$ if $b$ is even

Step 6
6 of 7
[begin{gathered}
{text{f) }}frac{{sqrt {{x^6}{{left( {{y^3}} right)}^{ – 2}}} }}{{{{left( {{x^3}y} right)}^{ – 2}}}} = frac{{sqrt {{x^6}{y^{ – 6}}} }}{{{x^{ – 6}}{y^{ – 2}}}} hfill \
hfill \
= frac{{{{left( {{x^6}{y^{ – 6}}} right)}^{frac{1}{2}}}}}{{{x^{ – 6}}{y^{ – 2}}}} = frac{{{x^3}{y^{ – 3}}}}{{{x^{ – 6}}{y^{ – 2}}}} hfill \
hfill \
= {x^{3 – left( { – 6} right)}}{y^{left( { – 3} right) – left( { – 2} right)}} = {x^9}{y^{ – 1}} hfill \
hfill \
= frac{{{x^9}}}{y} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$

$sqrt[m]{x^n}=x^{frac{n}{m}}$

$dfrac{x^a}{x^b}=x^{a-b}$

Result
7 of 7
a) $3xy^3$

b) $dfrac{b}{a}$

c) $dfrac{1}{m^2n^{frac{1}{2}}}$

d) $x^9$

e) $-dfrac{1}{x^{1.8}}$

f) $dfrac{x^9}{y}$

Exercise 9
Step 1
1 of 7
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $y$ & First Differences & Second Differences \ hline
$-5$ & $-38$ & & \ hline
$0$ & $-3$ & $-3-(-38)=35$ & \ hline
$5$ & $42$ & $42-(-3)=45$ & $45-35=10$ \ hline
$10$ & $97$ & $97-42=55$ & $55-45=10$ \ hline
$15$ & $162$ & $162-97=65$ & $65-55=10$ \ hline
$20$ & $237$ & $237-162=75$ & $75-65=10$ \ hline
end{tabular}
end{table}

a) The second differences are constant so it is quadratic.\\

Step 2
2 of 7
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|l|}
hline
$x$ & $y$ & First Differences \ hline
$0$ & $-45$ & \ hline
$2$ & $-15$ & $-15-(-45)=30$ \ hline
$4$ & $15$ & $15-(-15)=30$ \ hline
$6$ & $45$ & $45-15=30$ \ hline
$8$ & $75$ & $75-45=30$ \ hline
$10$ & $105$ & $105-75=30$ \ hline
end{tabular}
end{table}
b) The first differences are constant so it is linear.\\
Step 3
3 of 7
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $y$ & First Differences & Ratios of First Differences \ hline
$1$ & $13$ & & \ hline
$2$ & $43$ & $43-13=30$ & \ hline
$3$ & $163$ & $163-43=120$ & $120div 30=4$ \ hline
$4$ & $643$ & $643-163=480$ & $480 div 120=4$ \ hline
$5$ & $2;563$ & $2563-643=1920$ & $1920div 480=4$ \ hline
$6$ & $10;243$ & $10;243-2;563=7680$ & $7680div 1920=4$ \ hline
end{tabular}
end{table}
c) The ratios of first differences are constant so it is exponential.\\
Step 4
4 of 7
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $y$ & First Difference & Ratio of First Differences \ hline
$-2$ & $40$ & & \ hline
$-1$ & $20$ & $1000$ & \ hline
$0$ & $10$ & $20-10=10$ & $10div 20=0.5$ \ hline
$1$ & $5$ & $10-5=5$ & $5div 10=0.5$ \ hline
$2$ & $2.5$ & $5-2.5=2.5$ & $2.5div 5=0.5$ \ hline
$3$ & $1.25$ & $2.5-1.25=1.25$ & $1.25div 2.5=0.5$ \ hline
end{tabular}
end{table}
d) The ratios of first difference are constant so it is exponential.\\
Step 5
5 of 7
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $y$ & First Differences & Ratio of First Differences \ hline
$-2$ & $2000$ & & \ hline
$-1$ & $1000$ & $1000-2000=-1000$ & \ hline
$0$ & $500$ & $500-1000=-500$ & $frac{-500}{-1000}=0.5$ \ hline
$1$ & $250$ & $250-500=-250$ & $frac{-250}{-500}=0.5$ \ hline
$2$ & $125$ & $125-250=-125$ & $frac{-125}{-250}=0.5$ \ hline
$3$ & $62.5$ & $62.5-125=-62.5$ & $frac{-62.5}{-125}=0.5$ \ hline
end{tabular}
end{table}
e) The ratios of first differences are constant, so it is exponential.
Step 6
6 of 7
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|}
hline
$x$ & $y$ & First Difference & Ratio of First Differences \ hline
$0.2$ & $2000$ & & \ hline
$0.4$ & $1000$ & $-9.6-(-10.8)=1.2$ & \ hline
$0.6$ & $500$ & $-7.2-(-9.6)=2.4$ & $2.4div1.2=2$ \ hline
$0.8$ & $250$ & $-2.4-(-7.2)=4.8$ & $4.8div2.4=2$ \ hline
$1$ & $125$ & $7.2-(-2.4)=9.6$ & $9.6div4.8=2$ \ hline
$1.2$ & $62.5$ & $26.4-7.2=19.2$ & $19.2div9.6=2$ \ hline
end{tabular}
end{table}
f) The ratios of first differences are constant, so it is exponential.
Result
7 of 7
a) quadratic

b) linear

c) exponential

d) exponential

e) exponential

f) exponential

Exercise 10
Step 1
1 of 3
$bold{Concept:}$

exponential function $implies$ has an asymptote

quadratic function $implies$ parabolic and symmetric

linear $implies$ straight line

Step 2
2 of 3
$bold{Solution:}$

a) The graph has an asymptote so it must be exponential.

b) The graph is parabolic so it must be quadratic.

c) The graph has an asymptote so it must be exponential.

Result
3 of 3
a) exponential

b) quadratic

c) exponential

Exercise 11
Step 1
1 of 6
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
Transformation & Description \ hline
$y=f(x)+c$ & begin{tabular}[c]{@{}l@{}}vertical translation of\ $c$ units upwardend{tabular} \ hline
$y=f(x+d)$ & begin{tabular}[c]{@{}l@{}}horizontal translation of $d$ units\ to the leftend{tabular} \ hline
$y=acdot f(x)$ & begin{tabular}[c]{@{}l@{}}vertical stretching by a factor of $a$end{tabular} \ hline
$y=f(kx)$ & begin{tabular}[c]{@{}l@{}}horizontal compression by $dfrac{1}{|k|}$end{tabular} \ hline
$y=-f(x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in\ the $x$-axisend{tabular} \ hline
$y=f(-x)$ & begin{tabular}[c]{@{}l@{}}reflecting the function in \ the $y$-axisend{tabular} \ hline
end{tabular}
end{table}
Step 2
2 of 6
a) The base function is $y=left(dfrac{1}{2}right)^x$

(1) horizontal stretching by a factor of $2$ $implies left(dfrac{1}{2}right)^{frac{x}{2}}$

(2) vertical translation 3 units down $implies left(dfrac{1}{2}right)^{frac{x}{2}}-3$

Exercise scan

Step 3
3 of 6
b) The base function is $y=2^x$

(1) vertical stretching by a factor of $dfrac{1}{4}implies dfrac{1}{4}(2^x)$

(2) reflection in the $y$-axis $implies dfrac{1}{4}(2^{-x})$

(3) vertical translation 1 unit upwards $implies dfrac{1}{4}(2^{-x})+1$

Exercise scan

Step 4
4 of 6
c) The base function is $y=3^x$

(1) reflection in $x$-axis $implies -3^{x}$

(2) vertical stretching by a factor of 2 $implies -2(3^x)$

(3) horizontal compression by a factor of 2 $implies -2(3^{2x})$

(4) horizontal translation 2 units to the left $implies -2(3^{2(x+2)})=-2(3^{2x+4})$

Exercise scan

Step 5
5 of 6
d) The base function is $y=5^x$

(1) reflection in the $x$-axis $implies$ $-5^x$

(2) vertical compression by a factor of $dfrac{1}{10} implies -dfrac{1}{10}(5^x)$

(3) horizontal compression by a factor of 3 $implies =-dfrac{1}{10}left(5^{3x}right)$

(4) horizontal translation 3 units to the right $implies -dfrac{1}{10}left(5^{3(x-3)}right)$

(5) vertical translation 10 units upwards $implies -dfrac{1}{10}left(5^{3(x-3)}right)+10$

Exercise scan

Result
6 of 6
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|l|}
hline
& Base function & Transformation \ hline
a) & $y=left(dfrac{1}{2}right)^x$ & begin{tabular}[c]{@{}l@{}}(1) horizontal stretchiing by a factor of 2\ (2) vertical translation 3 units downwardend{tabular} \ hline
b) & $y=2^x$ & begin{tabular}[c]{@{}l@{}}(1) vertical stretching by a factor of $frac{1}{4}$\ (2) reflection in the $y$-axis\ (3) vertical translation 1 unit upwardsend{tabular} \ hline
c) & $y=3^x$ & begin{tabular}[c]{@{}l@{}}(1) reflection in the $x$-axis\ (2) vertical stretching by a factor of 2\ (3) horizontal compression by a factor of 2\ (4) horizontal translation 2 units to the leftend{tabular} \ hline
d) & $y=5^x$ & begin{tabular}[c]{@{}l@{}}(1) reflection in the $x$-axis\ (2) vertical compression by a factor of $frac{1}{10}$\ (3) horizontal compression by a factor of 3\ (4) horizontal translation 3 units to the right\ (5) vertical translation 10 units upwardend{tabular} \ hline
end{tabular}
end{table}
Exercise 12
Step 1
1 of 3
For a general exponential function $g(x)=acdot b^{k(x-d)}+c$

$y$-intercept: value of $y$ when $x=0$

asymptote: $y=c$

Step 2
2 of 3
From the given graph, we can find that when $x=0$, the value of $y$ is 2

$y$-intercept = 2

By inspection, we can see that the asymptote is $y=1$

Thus, this equation must be of the form

$y=acdot b^{k(x-d)}+1$

Since there are no vertical and horizontal scaling mentioned, $a=1$ and $k=1$

Since there is no horizontal translation, $d=0$

The equation is therefore of the form
$y=b^{x}+1$

We see that the graph passes through $(1,3)$ so we can solve for $b$ as

$3=b^{1}+1implies b=3-1=2$

The equation is therefore $y=2^x+1$

Result
3 of 3
$y$-intercept = 2

asymptote: $y=1$

equation: $y=2^x+1$

Exercise 13
Step 1
1 of 3
$bold{Concept:}$ For a general exponential function $y=ab^x$ where $xgeq 0$

$a=$ the initial amount or number

growth or decay rate = $b-1$

growth if $b>1$

decay if $b<1$

Step 2
2 of 3
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|l|}
hline
& Function & begin{tabular}[c]{@{}l@{}}Exponential Growth\ or Decayend{tabular} & Initial value & Growth or Decay Rate \ hline
a) & $V(t)=100(1.08)^t$ & $1.08>1implies$ growth & 100 & $1.08-1=0.08=8%$ \ hline
b) & $P(n)=32(0.95)^n$ & $0.951implies$ growth & 5 & $3-1=2=200%$ \ hline
d) & $Q(n)=600left(frac{5}{8}right)^n$ & $frac{5}{8}<1implies$ decay & 600 & $frac{5}{8}-1=-frac{3}{8}=-37.5%$ \ hline
end{tabular}
end{table}
Result
3 of 3
begin{table}[]
defarraystretch{1.8}%
begin{tabular}{|l|l|l|l|l|}
hline
& Function & begin{tabular}[c]{@{}l@{}} Growth or Decayend{tabular} & Initial value & Growth or Decay Rate \ hline
a) & $V(t)=100(1.08)^t$ & growth & 100 & $8%$ \ hline
b) & $P(n)=32(0.95)^n$ & decay & 32 & $-5%$ \ hline
c) & $A(x)=5(3)^x$ & growth & 5 & $200%$ \ hline
d) & $Q(n)=600left(frac{5}{8}right)^n$ & decay & 600 & $-37.5%$ \ hline
end{tabular}
end{table}
Exercise 14
Step 1
1 of 6
a) The part of the equation that indicates whether it is exponential growth or decay is the base.

base $>1implies$ growth

base $<1implies$ decay

In this case, base = $frac{1}{2}<1$, thus it is an exponential decay.

Step 2
2 of 6
b) The initial temperature of the coffee is the value of $T$ when $t=0$

$T(t)=69left(dfrac{1}{2}right)^{frac{t}{30}}+21$

$T(0)=69left(dfrac{1}{2}right)^{frac{0}{30}}+21$

$T(0)=69(1)+21=90$

The initial temperature of the coffee is $90^circ$ C

Step 3
3 of 6
c) Let the base function to be $y=left(dfrac{1}{2}right)^x$

Perform the following transformations.

(1) horizontal stretching by a factor of 30 $implies y=left(dfrac{1}{2}right)^{frac{t}{30}}$

(2) vertical stretching by a factor of 69 $implies y=69left(dfrac{1}{2}right)^{frac{t}{30}}$

(3) vertical translation 21 units upward $implies y=69left(dfrac{1}{2}right)^{frac{t}{30}}+21$

Exercise scan

Step 4
4 of 6
d) To find the temperature of the coffee after 48 min, substitute $t=48$

$T(48)=69left(dfrac{1}{2}right)^{frac{48}{30}}+21=44^circ$ C

Step 5
5 of 6
e) If the coffee cooled faster, the horizontal stretching factor in the exponent must be less than 30.

f) If the coffee cooled faster, the graph will be horizontally compressed, that is, the horizontal stretching factor must be less than 30.

Result
6 of 6
a) base $<1$

b) $90^circ$ C

c) graph has been plotted in the answers

d) 44 $^circ$ C

e) The 30 in the exponent must be lesser.

f) horizontally compressed

Exercise 15
Step 1
1 of 2
$bold{a)}$ The purchase price of the car is the initial price when $n=0$

$V(n)=28;000(0.875)^n$

$V(0)=28;000$

$bold{b)}$ The decay rate of $y=ab^x$ is $b-1$. In this case,

$0.875-1=-0.125$

The annual rate of depreciation is $12.5%$

$bold{c)}$ The value at the end of 3 years is the value of V when $n=3$

$V(3)=28;000(0.875)^3=$18758$

$bold{d)}$ 30 months = $dfrac{30}{12}=2.5$ years

$V(2.5)=28;000(0.875)^{2.5}=$20;053$

$bold{e)}$ The change in value in the first year is $V(1)-V(0)$

$V(0)-V(1)=28000(0.875)-28000=-$3500$

It lost $$3500$ in the first year.

$bold{f)}$ The value lost in the fifth year is $V(5)-V(4)$

$V(5)-V(4)=28000(0.875)^5-28000(0.875)^4=-2051.64$

It lost $$2052$ in the fifth year

Result
2 of 2
a) $$28;000$

b) $12.5%$

c) $$18;758$

d) $$20;053$

e) $$3500$

f) $$2052$

Exercise 16
Step 1
1 of 5
$bold{Concept:}$ The general exponential model is

$A(n)=A_0 (1+r)^{n}$

$A(n)$ is the quantity after $n$ periods

$A_0$ is the initial quantity

$r$ is the growth rate $(text{if} ;r>0)$ or decay rate $(text{if}; r<0)$

Step 2
2 of 5
$bold{Solution:}$

a) Let $P$ be the fraction of the pond covered by water lily and $n$ be the number of weeks.

β€œeach week they increase by 10$%$” $implies r=0.10$

β€œcover one-third of a pond now” $implies P_0=frac{1}{3}$

$P=P_0(1+r)^n$

$P=dfrac{1}{3}(1+0.10)^n$

$P=dfrac{1}{3}(1.1)^n$

Each part of the equation represents the following:

$dfrac{1}{3}$ signifies that initially, $dfrac{1}{3}$ of the pond is covered by lilies

$1.1$ signifies the 10$%$ increase in coverage each week

$n$ is the number of weeks elapsed

Step 3
3 of 5
b) Let $A$ be the amount of radioactive isotope, $A_0$ be the initial amount, and $t$ be the number of years.

β€œhalf-life of $4.5times 10^9$ years” $implies r=-dfrac{1}{2}$ and $n=dfrac{t}{4.5times 10^9}$

$A=A_0left(1-dfrac{1}{2}right)^{frac{t}{4.5times 10^9}}$

$A=A_0left(dfrac{1}{2}right)^{frac{t}{4.5times 10^9}}$

Each part of the equation represents the following:

$A_0$ is the initial amount of $U_{238}$

$dfrac{1}{2}$ signifies that the amount is halved every certain period

$4.5times 10^9$ signifies the time at which it will be halved

$t$ is the number of years.

Step 4
4 of 5
c) Let $I$ be the intensity and $n$ is the number of gels.

β€œeach gel reduces the intensity by $4%$” $implies r=-0.04$

Assume initial value of $100%$

$I=100(1-0.04)^n$

$I=100(0.96)^n$

Each part of the equation represents the following.

$0.96$ signifies that it decreases by $4%$ per gel

$n$ is the number of gels

Result
5 of 5
a) $P=dfrac{1}{3}(1.1)^n$

b) $A=A_0left(dfrac{1}{2}right)^{frac{t}{4.5times10^9}}$

c) $I=100(0.96)^n$

Exercise 17
Step 1
1 of 5
$bold{Concept:}$ The general exponential model is

$A(n)=A_0 (1+r)^{n}$

$A(n)$ is the amount/population after $n$ periods

$A_0$ is the initial amount

$r$ is the growth rate $(text{if} ;r>0)$ or decay rate $(text{if}; r<0)$

Step 2
2 of 5
$bold{Solution:}$

a) Let $P$ be the population at any year, $P_0$ be the population in the year $1990$, and $n$ be the number of years after 1990.

β€œgrowing at a rate of 3$%$ per year” $implies r=0.03$

β€œIn 1990, the population was 45 000” $implies P_0=45;000$

$P=P_0(1+r)^n$

$P=45;000(1+0.03)^n$

$P=45;000(1.03)^n$

In this case, equation

$P$ is the population at any $n$

$45,000$ is the population in 1990

$1.03$ signifies the 3$%$ increase per year

$n$ is the number of years after 1990

Step 3
3 of 5
b) In 2007, $n=2007-1990=17$

$P=45;000(1.03)^{17}=74;378$

c) The population doubles when $P=2times 45;000=90;000$

By graphical approach, we see that it would be 24 years after 1990 which is 2014.

Exercise scan

Step 4
4 of 5
d) We shall find $r$ such that $P=90;000$ when $n=10$

$P=45;000(1+r)^n$

$90;000=45;000(1+r)^{10}$

$(1+r)^{10}=dfrac{90;000}{45;000}$

$(1+r)^{10}=2$

$[(1+r)^{10}]^{frac{1}{10}}=2^{frac{1}{10}}$

$1+r=2^{frac{1}{10}}$

$r=2^{frac{1}{10}}-1$

$$
r=0.0718=7.2%
$$

Result
5 of 5
a) $P=45;000(1.03)^n$

b) $74;378$

c) during 2014

d) $7.2%$

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90Β°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0Β° and 360Β°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review