
All Solutions
Page 239: Practice Questions
$$
x^{a}x^{b}=x^{a+b}
$$
dfrac{x^a}{x^b}=x^{a-b}
$$
(x^a)^b=x^{ab}
$$
$$
=3^{7-5}=3^2
$$
$$
dfrac{x^a}{x^b}=x^{a-b}
$$
$=left(dfrac{1}{10}right)^{6-4}$
$=left(dfrac{1}{10}right)^2$
$$
dfrac{x^a}{x^b}=x^{a-b}
$$
$=left(7^{2-4}right)^{-1}$
$=left(7^{-2}right)^{-1}$
$=left(7^{-2(-1)}right)$
$=7^2$
$$
(x^a)^b=x^{ab}
$$
b) $-dfrac{1}{8}$
c) $9^{18}$
d) $3^2$
e) $left(dfrac{1}{10}right)^2$
f) $7^2$
a),,{4^{ β 2}} β {8^{ β 1}} hfill \
= frac{1}{{{4^2}}} β frac{1}{8} hfill \
= frac{1}{{16}} β frac{1}{8} hfill \
= frac{1}{{16}} β frac{{1left( 2 right)}}{{8left( 2 right)}} hfill \
= frac{1}{{16}} β frac{2}{{16}} hfill \
= -frac{{ 1}}{{16}} hfill \
end{gathered} ]
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{b) }}{left( {4 + 8} right)^0} β {5^{ β 2}} hfill \
= {left( {12} right)^0} β {5^{ β 2}} hfill \
= 1 β {5^{ β 2}} hfill \
= 1 β frac{1}{{{5^2}}} hfill \
= 1 β frac{1}{{25}} hfill \
= frac{{25}}{{25}} β frac{1}{{25}} hfill \
= frac{{24}}{{25}} hfill \
end{gathered} ]
$x^0=1$ for all $x$ except $x=0$
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{c) 2}}{{text{5}}^{ β 1}} + 3{left( {{5^{ β 1}}} right)^2} hfill \
= {25^{ β 1}} + 3left( {{5^{ β 2}}} right) hfill \
= frac{1}{{25}} + frac{3}{{{5^2}}} hfill \
= frac{1}{{25}} + frac{3}{{25}} hfill \
= frac{4}{{25}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$$
x^{-a}=dfrac{1}{x^a}
$$
$=(-1)^3cdot left(dfrac{1}{2}right)^3+4^{-3}$
$=-1cdot dfrac{1}{2^3}+4^{-3}$
$=-1cdot dfrac{1}{8}+dfrac{1}{4^3}$
$=-dfrac{1}{8}+dfrac{1}{64}$
$=-dfrac{1(8)}{8(8)}+dfrac{1}{64}$
$=-dfrac{8}{64}+dfrac{1}{64}$
$$
=-dfrac{7}{64}
$$
$(-x)^a=(-1)^acdot x^a$
if $a$ is even, $(-1)^a=1$
if $a$ is odd, $(-1)^a=-1$
$$
x^{-a}=dfrac{1}{x^a}
$$
b) $dfrac{24}{25}$
c) $dfrac{4}{25}$
d) $-dfrac{7}{64}$
{text{a) }}{left( {frac{4}{7}} right)^2} = frac{{{4^2}}}{{{7^2}}} = frac{{16}}{{49}}
$$
$$
{left( {dfrac{x}{y}} right)^a} = dfrac{{{x^a}}}{{{y^a}}}
$$
{text{b) }}{left( { β frac{2}{5}} right)^3} = {left( { β 1} right)^3}{left( {frac{2}{5}} right)^3} = β 1 cdot frac{{{2^3}}}{{{5^3}}} = β frac{8}{{125}}
$$
{text{Use the following rules:}} hfill \
{left( { β x} right)^a} = {left( { β 1} right)^a}{x^a} hfill \
{left( { β 1} right)^a} = left{ {begin{array}{*{20}{c}}
{1{text{ if }}a{text{ is even}}} \
{ β 1{text{ if }}a{text{ is odd}}}
end{array}} right. hfill \
hfill \
{left( {frac{x}{y}} right)^a} = frac{{{x^a}}}{{{y^a}}} hfill \
end{gathered} ]
{text{c) }}{left( { β frac{2}{3}} right)^{ β 3}} = {left( { β frac{3}{2}} right)^3} = {left( { β 1} right)^3} cdot frac{{{3^3}}}{{{2^3}}} = β frac{{27}}{8}
$$
{text{Use the following rules:}} hfill \
{left( { β x} right)^a} = {left( { β 1} right)^a}{x^a} hfill \
{left( { β 1} right)^a} = left{ {begin{array}{*{20}{c}}
{1{text{ if }}a{text{ is even}}} \
{ β 1{text{ if }}a{text{ is odd}}}
end{array}} right. hfill \
hfill \
{left( {frac{x}{y}} right)^{ β a}} = {left( {frac{y}{x}} right)^a} = frac{{{y^a}}}{{{x^a}}} hfill \
end{gathered} ]
{text{d) }}frac{{{{left( { β 3} right)}^{ β 2}}}}{{{{left( { β 3} right)}^{ β 5}}}} = {left( { β 3} right)^{ β 2 β left( { β 5} right)}} = {left( { β 3} right)^{ β 2 + 5}} hfill \
= {left( { β 3} right)^3} = {left( { β 1} right)^3} cdot {3^3} = β 27 hfill \
hfill \
end{gathered} ]
{text{Use the following rules:}} hfill \
{left( { β x} right)^a} = {left( { β 1} right)^a}{x^a} hfill \
{left( { β 1} right)^a} = left{ {begin{array}{*{20}{c}}
{1{text{ if }}a{text{ is even}}} \
{ β 1{text{ if }}a{text{ is odd}}}
end{array}} right. hfill \
hfill \
frac{{{x^a}}}{{{x^b}}} = {x^{a β b}} hfill \
end{gathered} ]
b) $-dfrac{8}{125}$
c) $-dfrac{27}{8}$
d) $-27$
{text{ We know that }}{x^{frac{1}{2}}} = sqrt x {text{ and }}x{text{ is restricted}} hfill \
{text{to non-negative values, that is, }}x geq 0 hfill \
{text{For }}{x^{ β frac{1}{2}}} = frac{1}{{sqrt x }},{text{ the denominator can NOT be }} hfill \
{text{zero so it is restricted to }}x > 0 hfill \
hfill \
{text{Thus, }}{x^{ β frac{1}{2}}}{text{ and }}{x^{frac{1}{2}}}{text{ have different restrictions}}{text{.}} hfill \
hfill \
hfill \
end{gathered} ]
{x^{ β frac{1}{2}}}{text{ is restricted to }}x > 0 hfill \
{x^{frac{1}{2}}}{text{ is restricted to }}x geq 0 hfill \
end{gathered} ]
{text{a) }}{left( {frac{{49}}{{81}}} right)^{frac{1}{2}}} = sqrt {frac{{49}}{{81}}} = frac{{sqrt {49} }}{{sqrt {81} }} = frac{{sqrt {{7^2}} }}{{sqrt {{9^2}} }} = frac{7}{9}
$$
$x^{frac{n}{m}}=sqrt[m]{x^n}$
$sqrt{dfrac{a}{b}}=dfrac{sqrt{a}}{sqrt{b}}$
$$
sqrt{a^2}=a
$$
{text{b) }}sqrt {frac{{100}}{{121}}} = frac{{sqrt {100} }}{{sqrt {121} }} = frac{{sqrt {{{10}^2}} }}{{sqrt {{{11}^2}} }} = frac{{10}}{{11}}
$$
$$
sqrt{a^2}=a
$$
{text{c) }}{left( {frac{{16}}{9}} right)^{ β 0.5}} = {left( {frac{9}{{16}}} right)^{0.5}} = {left( {frac{{{3^2}}}{{{4^2}}}} right)^{0.5}} = frac{3}{4}
$$
$$
(x^a)^b=x^{ab}
$$
{text{d) }}{left[ {{{left( { β 125} right)}^{frac{1}{3}}}} right]^{ β 3}} = {left( { β 125} right)^{ β 1}} = frac{1}{{left( { β 125} right)}} = β frac{1}{{125}}
$$
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{e) }}sqrt[4]{{{{left( { β 9} right)}^{ β 2}}}} = sqrt[4]{{frac{1}{{{{left( { β 9} right)}^2}}}}} = sqrt[4]{{frac{1}{{81}}}} = {left( {frac{1}{{81}}} right)^{frac{1}{4}}} = {left( {frac{1}{{{3^4}}}} right)^{frac{1}{4}}} = frac{1}{3}
$$
$x^{-a}=dfrac{1}{x^a}$
$x^{frac{n}{m}}$ is undefined when
$x<0$ and $m$ is even number.
{text{f) }}frac{{ β sqrt[3]{{512}}}}{{sqrt[5]{{ β 1024}}}} = frac{{ β {{512}^{frac{1}{3}}}}}{{ β {{1024}^{frac{1}{5}}}}} = frac{{ β {{left( {{2^9}} right)}^{frac{1}{3}}}}}{{ β {{left( {{2^{10}}} right)}^{left( {frac{1}{5}} right)}}}} = frac{{ β {2^3}}}{{ β {2^2}}} = frac{{ β 8}}{{ β 4}} = 2
$$
$(x^a)^b=x^{ab}$
$x^{frac{n}{m}}$ is undefined when
$x<0$ and $m$ is even number.
b) $dfrac{10}{11}$
c) $dfrac{3}{4}$
d) $-dfrac{1}{125}$
e) $dfrac{1}{3}$
f) 2
$sqrt[m]{a^n}=a^{frac{n}{m}}$
To evaluate the expression, remember that
$$
(a^m)^{frac{1}{m}}=a
$$
defarraystretch{1.75}%
begin{tabular}{|l|l|l|}
hline
begin{tabular}[c]{@{}l@{}}Exponential\ Formend{tabular} & Radical Form & begin{tabular}[c]{@{}l@{}}Evaluation of\ Expressionend{tabular} \ hline
a) 100$^frac{1}{2}$ & $sqrt{100}$ & 10 \ hline
b) $16^{0.25}=16^{frac{1}{4}}$ & $sqrt[4]{16}$ & $sqrt[4]{2^4}=2$ \ hline
c) $ 121^{frac{1}{2}}$ & $sqrt{121}$ & $sqrt{11^2}=11$ \ hline
d) $ (-27)^{frac{5}{3}}$ & $sqrt[3]{(-27)^5}$ & $(-27)^{frac{5}{3}}=(-3^3)^{frac{5}{3}}=-3^5=-243$ \ hline
e) $ 49^{2.5}=49^{frac{5}{2}}$ & $sqrt[2]{49^5}$ & $49^{frac{5}{2}}=(7^2)^{frac{5}{2}}=7^5=16807$ \ hline
f) $ 1024^{frac{1}{10}}$ & $sqrt[10]{1024}$ & $1024^{frac{1}{10}}=(2^{10})^{frac{1}{10}}=2$ \ hline
end{tabular}
end{table}
defarraystretch{1.5}%
begin{tabular}{|l|l|l|}
hline
begin{tabular}[c]{@{}l@{}}Exponential\ Formend{tabular} & Radical Form & begin{tabular}[c]{@{}l@{}}Evaluation of\ Expressionend{tabular} \ hline
a) 100$^frac{1}{2}$ & $sqrt{100}$ & 10 \ hline
b) $16^{0.25}$ & $sqrt[4]{16}$ & $2$ \ hline
c) $121^{frac{1}{2}}$ & $sqrt{121}$ & $11$ \ hline
d) $(-27)^{frac{5}{3}}$ & $sqrt[3]{(-27)^5}$ & $-243$ \ hline
e) $49^{2.5}$ & $sqrt[2]{49^5}$ & $16807$ \ hline
f) $1024^{frac{1}{10}}$ & $sqrt[10]{1024}$ & $2$ \ hline
end{tabular}
end{table}
a) $-456^{frac{4}{7}}=-33.068$
b) $98^{0.25}=3.146$
c) $left(dfrac{5}{8}right)^{frac{5}{8}}=0.745$
d) $left(sqrt[5]{-1000}right)^3=(-1000)^{frac{3}{5}}=-63.096$
b) $31.147$
c) $0.745$
d) $-63.096$
$-8^{frac{4}{3}}=-(2^3)^{frac{4}{3}}=-(2^4)=-16$
$(-8)^{frac{4}{3}}=(-2^3)^{frac{4}{3}}=(-2)^4=16$
The difference is in how the negative sign is placed. The second one has negative sign inside the parenthesis while the first one does not. Remember that
$$
{left( { β x} right)^{frac{n}{m}}} = left{ {begin{array}{c}
{|x{|^{frac{n}{m}}}{text{ for odd }}m{text{ and even }}n} \
{ β |x{|^{frac{n}{m}}}{text{for odd }}m{text{ and odd }}n} \
{{text{undefined for even }}m}
end{array}} right.
$$
We can also see the difference when write in radical form.
$-8^{frac{4}{3}}=-sqrt[3]{8^4}$
$$
(-8)^{frac{4}{3}}=sqrt[3]{(-8)^4}
$$
$-8^{frac{4}{3}}=-sqrt[3]{8^4}=-16$
$$
(-8)^{frac{4}{3}}=sqrt[3]{(-8)^4}=16
$$
{text{a) }} hfill \
frac{{{x^{ β 3}}left( {{x^5}} right)}}{{{x^7}}} = frac{{{x^{ β 3 + 5}}}}{{{x^7}}} = frac{{{x^2}}}{{{x^7}}} = {x^{2 β 7}} = {x^{ β 5}} = frac{1}{{{x^5}}} hfill \
end{gathered} ]
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{b) }} hfill \
frac{{{n^{ β 4}}left( {{n^{ β 6}}} right)}}{{{n^{ β 14}}}} = frac{{{n^{ β 4 + left( { β 6} right)}}}}{{{n^{ β 14}}}} = frac{{{n^{ β 10}}}}{{{n^{ β 14}}}} = {n^{ β 10 β left( { β 14} right)}} = {n^4} hfill \
end{gathered} ]
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
{text{c) }} hfill \
{left( {frac{{{{left( {{y^2}} right)}^6}}}{{{y^9}}}} right)^{ β 2}} = {left( {frac{{{y^{12}}}}{{{y^9}}}} right)^{ β 2}} = {left( {{y^{12 β 9}}} right)^{ β 2}} = {left( {{y^3}} right)^{ β 2}} = {y^{ β 6}} = frac{1}{{{y^6}}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{d) }} hfill \
frac{{{{left( { β 2{x^5}} right)}^3}}}{{8{x^{10}}}} = frac{{{{( β 2)}^3}{x^{5(3)}}}}{{8{x^{10}}}} = frac{{-8{x^{15}}}}{{8{x^{10}}}} = {-x^{15 β 10}} = {-x^5} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
{text{e) }} hfill \
{left( {3{a^2}} right)^{ β 3}} times {left( {9{a^{ β 1}}} right)^2} hfill \
= {3^{ β 3}}{a^{ β 6}} times {9^2}{a^{ β 2}} hfill \
= {3^{ β 3}}{a^{ β 6}} times 81{a^{ β 2}} hfill \
= {3^{ β 3}} times {a^{ β 6}} times {3^4}{a^{ β 2}} hfill \
= 3{a^{ β 6}}{a^{ β 2}} hfill \
{text{ = 3}}{{text{a}}^{ β 6 + left( { β 2} right)}} hfill \
= 3{a^{ β 8}} hfill \
{text{ = }}frac{3}{{{a^8}}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$$
x^{-a}=dfrac{1}{x^a}
$$
{text{f) }} hfill \
frac{{left( {4{r^{ β 6}}} right) times {{left( { β 2{r^2}} right)}^5}}}{{{{left( { β 2r} right)}^4}}} = frac{{4{r^{ β 6}} times {{left( { β 2} right)}^5}{r^{10}}}}{{{{left( { β 2r} right)}^4}}} hfill \
= frac{{4{r^{ β 6}} times left( { β 32} right){r^{10}}}}{{16{r^4}}} = frac{{ β 8{r^{10 β 6}}}}{{{r^4}}} hfill \
= β frac{{8{r^4}}}{{{r^4}}} = β 8 hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
b) $n^4$
c) $dfrac{1}{y^6}$
d) $-x^5$
e) $dfrac{3}{a^8}$
f) $-8$
{text{a) }} hfill \
frac{{{x^{0.5}}{y^{1.8}}}}{{{x^{0.3}}{y^{2.5}}}} = {x^{0.5 β 0.3}}{y^{1.8 β 2.5}} hfill \
= {x^{0.2}}{y^{ β 0.7}} hfill \
= frac{{{x^{0.2}}}}{{{y^{0.7}}}} hfill \
end{gathered} ]
$dfrac{x^a}{x^b}=x^{a-b}$
{text{b) }} hfill \
frac{{{{left( {m{n^3}} right)}^{ β frac{1}{2}}}}}{{{m^{frac{1}{2}}}{n^{ β frac{5}{2}}}}} = frac{{{m^{ β frac{1}{2}}}{n^{ β frac{3}{2}}}}}{{{m^{frac{1}{2}}}{n^{ β frac{5}{2}}}}} hfill \
hfill \
= {m^{ β frac{1}{2} β left( {frac{1}{2}} right)}}{n^{ β frac{3}{2} β left( { β frac{5}{2}} right)}} = {m^{ β 1}}n = frac{n}{m} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$dfrac{x^a}{x^b}=x^{a-b}$
$x^{-a}=dfrac{1}{x^a}$
{text{c)}} hfill \
frac{{sqrt {{x^2}{y^4}} }}{{{{left( {{x^{ β 2}}{y^3}} right)}^{ β 1}}}} = frac{{{{left( {{x^2}{y^4}} right)}^{frac{1}{2}}}}}{{{{left( {{x^{ β 2}}{y^3}} right)}^{ β 1}}}} = frac{{x{y^2}}}{{{x^2}{y^{ β 3}}}} = frac{{{y^5}}}{x} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$dfrac{x^a}{x^b}=x^{a-b}$
{text{d) }} hfill \
{left( {frac{{2ab{c^3}}}{{{{left( {2{a^2}{b^3}c} right)}^2}}}} right)^{ β 2}} = {left( {frac{{2ab{c^3}}}{{2{a^4}{b^6}{c^2}}}} right)^{ β 2}} hfill \
hfill \
= {left( {frac{c}{{{a^3}{b^5}}}} right)^{ β 2}} = {left( {frac{{2{a^3}{b^5}}}{c}} right)^2} hfill \
hfill \
= frac{{4{a^6}{b^{10}}}}{{{c^2}}} hfill \
end{gathered} ]
$left( x^a right)^b=x^{ab}$
$dfrac{x^a}{x^b}=x^{a-b}$
$x^{-a}=dfrac{1}{x^a}$
{text{e) }}frac{{sqrt[4]{{81{p^8}}}}}{{sqrt {9{p^4}} }} = frac{{{{left( {81{p^8}} right)}^{frac{1}{4}}}}}{{{{left( {9{p^4}} right)}^{frac{1}{2}}}}} = frac{{{{left( {{3^4}{p^8}} right)}^{frac{1}{4}}}}}{{{{left( {{3^2}{p^4}} right)}^{frac{1}{2}}}}} = frac{{3{p^2}}}{{3{p^2}}} = 1
$$
$sqrt[m]{x^n}=x^{frac{n}{m}}$
$(x^a)^b=x^{ab}$
$dfrac{x^a}{x^b}=x^{a-b}$
{text{f) }} hfill \
frac{{sqrt[6]{{{{left( {8{x^6}} right)}^2}}}}}{{sqrt[4]{{625{x^8}}}}} = frac{{{{left( {8{x^6}} right)}^{frac{2}{6}}}}}{{{{left( {625{x^8}} right)}^{frac{1}{4}}}}} = frac{{{{left( {{2^3}{x^6}} right)}^{frac{2}{6}}}}}{{{{left( {{5^4}{x^8}} right)}^{frac{1}{4}}}}} = frac{{{{left( {{2^3}{x^6}} right)}^{frac{1}{3}}}}}{{{{left( {{5^4}{x^8}} right)}^{frac{1}{4}}}}} hfill \
= frac{{{{left( {{2^3}} right)}^{frac{1}{3}}}{x^{6left( {frac{1}{3}} right)}}}}{{{{left( {{5^4}{x^8}} right)}^{frac{1}{4}}}}} = frac{{2{x^2}}}{{5{x^2}}} = frac{2}{5} hfill \
end{gathered} ]
$sqrt[m]{x^n}=x^{frac{n}{m}}$
$(x^a)^b=x^{ab}$
$dfrac{x^a}{x^b}=x^{a-b}$
b) $dfrac{n}{m}$
c) $dfrac{y^5}{x}$
d) $dfrac{4a^6b^{10}}{c^2}$
e) 1
f) $dfrac{2}{5}$
{text{a) }}{left( {frac{{{b^3}}}{{{a^{frac{5}{2}}}}}} right)^2}left( {frac{{2{a^4}}}{{{b^5}}}} right) = left( {frac{{{b^6}}}{{{a^5}}}} right)left( {frac{{2{a^4}}}{{{b^5}}}} right) = left( {frac{{{b^6}}}{{{a^5}}}} right)left( {frac{{2{a^4}}}{{{b^5}}}} right) hfill \
= 2{b^{6 β 5}}{a^{4 β 5}} = 2b{a^{ β 1}} = frac{{2b}}{a} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$x^{-a}=dfrac{1}{x^a}$
{text{b) }}sqrt {frac{{9{b^3}{{left( {ab} right)}^2}}}{{{{left( {{a^2}{b^3}} right)}^3}}}} = sqrt {frac{{9{b^3}left( {{a^2}{b^2}} right)}}{{{{left( {{a^2}{b^3}} right)}^3}}}} = sqrt {frac{{9{a^2}{b^5}}}{{{a^6}{b^9}}}} hfill \
= {left( {frac{{9{a^2}{b^5}}}{{{a^6}{b^9}}}} right)^{frac{1}{2}}} = {left( {9{a^{2 β 6}}{b^{5 β 9}}} right)^{frac{1}{2}}} = {9^{frac{1}{2}}}{left( {{a^{ β 4}}{b^{ β 5}}} right)^{frac{1}{2}}} hfill \
= 3{a^{ β 2}}{b^{ β 5/2}} = frac{3}{{{a^2}{b^{frac{5}{2}}}}} hfill \
end{gathered} ]
$sqrt[m]{x^n}=x^{frac{n}{m}}$
$(x^a)^b=x^{ab}$
$$
x^{-a}=dfrac{1}{x^a}
$$
b) $dfrac{3}{a^2b^{frac{5}{2}}}$
{text{a) }}left( {{a^{10 + 2p}}} right)left( {{a^{ β p β 8}}} right) hfill \
= {a^{left( {10 + 2p} right) + left( { β p β 8} right)}} hfill \
= {a^{p + 2}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$$
x^acdot x^b=x^{a+b}
$$
{text{b) }}{left( {2{x^2}} right)^{3 β 2m}}{left( {frac{1}{x}} right)^{2m}} hfill \
= {2^{3 β 2m}}{x^{2left( {3 β 2m} right)}}{x^{ β 2m}} hfill \
= {2^{3 β 2m}}{x^{2left( {3 β 2m} right) β 2m}} hfill \
= {2^{3 β 2m}}{x^{6 β 4m β 2m}} hfill \
= {2^{3 β 2m}}{x^{6 β 6m}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$$
left(dfrac{1}{x}right)^a=x^{-a}
$$
{text{c) }}left[ {{c^{2n β 3m}}} right]{left( {{c^3}} right)^m} div {left( {{c^2}} right)^n} hfill \
= {c^{2n β 3m}}{c^{3m}} div {c^{2n}} hfill \
= frac{{{c^{2n β 3m + 3m}}}}{{{c^{2n}}}} hfill \
= {c^{2n β 3m + 3m β 2n}} hfill \
= 1 hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
$$
left(dfrac{1}{x}right)^a=x^{-a}
$$
{text{d) }}left( {{x^{4n β m}}} right){left( {frac{1}{{{x^3}}}} right)^{m + n}} hfill \
= {x^{4n β m}} cdot {x^{ β 3left( {m + n} right)}} hfill \
= {x^{4n β m β 3left( {m + n} right)}} hfill \
= {x^{4n β m β 3m β 3n}} hfill \
= {x^{n β 4m}} hfill \
end{gathered} ]
$(x^a)^b=x^{ab}$
$x^acdot x^b=x^{a+b}$
$dfrac{x^a}{x^b}=x^{a-b}$
$$
left(dfrac{1}{x}right)^a=x^{-a}
$$
b) $2^{3-2m}x^{6-6m}$
c) $1$
d) $x^{n-4m}$