Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Page 235: Check Your Understanding

Exercise 1
Step 1
1 of 7
a) $x^4(x^3)=x^{4+3}=x^7$
Use the rule:

$$
x^{a} (x^{b})=x^{a+b}
$$

Step 2
2 of 7
b) $(p^{-3})(p)^5=p^{-3+5}=p^2$
Use the rule:

$$
x^{a}( x^{b})=x^{a+b}
$$

Step 3
3 of 7
c) $dfrac{m^5}{m^{-3}}=m^{5-(-3)}=m^8$
Use the rule:

$$
dfrac{x^{a}}{x^{b}}=x^{a-b}
$$

Step 4
4 of 7
d) $dfrac{a^{-4}}{a^{-2}}=a^{-4-(-2)}=a^{-2}=dfrac{1}{a^2}$
Use the rules:

$dfrac{x^{a}}{x^{b}}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 5
5 of 7
e) $(y^3)^2=y^{3(2)}=y^6$
Use the rule:

$$
(x^{a})^b=x^{ab}
$$

Step 6
6 of 7
f) $(k^6)^{-2}=k^{6(-2)}=k^{-12}=dfrac{1}{k^{12}}$
Use the rule:

$(x^{a})^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Result
7 of 7
a) $x^7$

b) $p^2$

c) $m^8$

d) $dfrac{1}{a^2}$

e) $y^6$

f) $dfrac{1}{k^{12}}$

Exercise 2
Step 1
1 of 7
a) $y^{10}(y^4)^{-3}$

$y^{10}(y^4)^{-3}$

$=y^{10}y^{4(-3)}$

$=y^{10}y^{-12}$

$=y^{10+(-12)}$

$=y^{-2}$

$$
=dfrac{1}{y^2}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$$
(x^a)(x^b)=x^{a+b}
$$

Step 2
2 of 7
b) $(x^{-3})^{-3}(x^{-1})^5$

$=x^{-3(-3)}cdot x^{-1(5)}$

$=x^{9}cdot x^{-5}$

$=x^{9-5}$

$$
=x^{4}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$$
(x^a)(x^b)=x^{a+b}
$$

Step 3
3 of 7
c) $dfrac{n^{-4})^3}{(n^{-3})^{-4}}$

$=dfrac{n^{-4(3)}}{n^{-3(-4)}}$

$=dfrac{n^{-12}}{n^{12}}$

$=n^{-12-12}$

$=n^{-24}$

$$
=dfrac{1}{n^{24}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 4
4 of 7
d) $dfrac{w^4(w^{-3})}{(w^{-2})^{-1}}$

$=dfrac{w^{4+(-3)}}{w^{-2(-1)}}$

$=dfrac{w^{1}}{w^2}$

$=w^{1-2}$

$=w^{-1}$

$$
=dfrac{1}{w^{}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 5
5 of 7
e) $dfrac{(x^{-1})^4x}{x^{-3}}$

$=dfrac{x^{-4}cdot x}{x^{-3}}$

$=dfrac{x^{-4+1}}{x^{-3}}$

$=dfrac{x^{-3}}{x^{-3}}$

$=x^{-3-(-3)}$

$=x^0$

$$
=1
$$

Use the rules:

$(x^a)^b=x^{ab}$

$x^acdot x^{b}=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$x^{-a}=dfrac{1}{x^a}$

$x^0=1$ for all $xneq 0$

Step 6
6 of 7
f) $dfrac{(b^{-7})^2}{b(b^{-5})b^9}$

$=dfrac{b^{-7(2)}}{b^{1-5+9}}$

$=dfrac{b^{-14}}{b^5}$

$=b^{-14-5}$

$=b^{-19}$

$$
=dfrac{1}{b^{19}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$x^acdot x^{b}=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$x^{-a}=dfrac{1}{x^a}$

Result
7 of 7
a) $dfrac{1}{y^2}$

b) $x^4$

c) $dfrac{1}{n^{24}}$

d) $dfrac{1}{w}$

e) $1$

f) $dfrac{1}{b^{19}}$

Exercise 3
Step 1
1 of 2
[begin{gathered}
{text{a) Evaluate the powers}} hfill \
frac{{{x^7}{{left( {{y^2}} right)}^3}}}{{{x^5}{y^4}}} = frac{{{{left( { – 2} right)}^7}{{left( {{3^2}} right)}^3}}}{{{{left( { – 2} right)}^5}{{left( 3 right)}^4}}} hfill \
= frac{{left( { – 128} right)left( {729} right)}}{{left( { – 32} right)left( {81} right)}} hfill \
{text{Multiply}} hfill \
= frac{{ – 93312}}{{ – 2592}} hfill \
{text{Simplify}} hfill \
= 36 hfill \
hfill \
{text{b) Evaluate the powers}} hfill \
frac{{{x^7}{{left( {{y^2}} right)}^3}}}{{{x^5}{y^4}}} = frac{{{x^7}{y^6}}}{{{x^5}{y^4}}} hfill \
= {x^2}{y^2} hfill \
= {left( { – 2} right)^2}{left( 3 right)^2} hfill \
= left( 4 right)left( 9 right) hfill \
{text{Multiply}} hfill \
= 36 hfill \
hfill \
{text{c) A simplified expression is faster to calculate }} hfill \
{text{rather than to substitute the numbers first}}{text{.}} hfill \
hfill \
end{gathered} ]
Result
2 of 2
a) 36

b) $x^2y^2=36$

c) It is often faster to substitute numbers into a simplified form.

Exercise 4
Step 1
1 of 2
[begin{gathered}
{text{a) Evaluate the powers}} hfill \
{left( {p{q^2}} right)^{ – 1}}left( {{p^3}{q^3}} right) = left( {{p^{ – 1}}{q^{ – 2}}} right)left( {{p^3}{q^3}} right) hfill \
= {p^{ – 1 + 3}}{q^{ – 2 + 3}} hfill \
= {p^2}q hfill \
hfill \
{text{b) Evaluate the powers}} hfill \
{left( {frac{{{x^3}}}{y}} right)^{ – 2}} = frac{{{x^{3left( { – 2} right)}}}}{{{y^{ – 2}}}} hfill \
= frac{{{x^{ – 6}}}}{{{y^{ – 2}}}} hfill \
{text{Remember this rule, }}{left( {frac{a}{b}} right)^{ – n}} = {left( {frac{b}{a}} right)^n} hfill \
= frac{{{y^2}}}{{{x^6}}} hfill \
hfill \
{text{c) Evaluate the powers}} hfill \
frac{{{{left( {ab} right)}^{ – 2}}}}{{{b^5}}} = frac{{{a^{ – 2}}{b^{ – 2}}}}{{{b^5}}} hfill \
{text{Simplify the expression}}{text{.}} hfill \
= {a^{ – 2}}{b^{ – 2 – 5}} hfill \
= {a^{ – 2}}{b^{ – 7}} hfill \
{text{Remember this rule, }}{a^{ – n}} = frac{1}{{{a^n}}} hfill \
= frac{1}{{{a^2}{b^7}}} hfill \
hfill \
{text{d) Evaluate the powers}} hfill \
frac{{{m^2}{n^2}}}{{{{left( {{m^3}{n^{ – 2}}} right)}^2}}} = frac{{{m^2}{n^2}}}{{{m^{3left( 2 right)}}{n^{ – 2left( 2 right)}}}} hfill \
= frac{{{m^2}{n^2}}}{{{m^6}{n^4}}} hfill \
{text{Simplfy the expression}}{text{.}} hfill \
= {m^{2 – 6}}{n^{2 – left( { – 4} right)}} hfill \
= {m^{ – 4}}{n^6} hfill \
{text{Remember this rule, }}{left( {frac{a}{b}} right)^{ – n}} = {left( {frac{b}{a}} right)^n} hfill \
= frac{{{m^6}}}{{{n^4}}} hfill \
hfill \
{text{e) }} hfill \
frac{{{{left( {{w^2}x} right)}^2}}}{{{{left( {{x^{ – 1}}} right)}^2}{w^3}}} = frac{{{w^{2left( 2 right)}}{x^2}}}{{{x^{ – 1left( 2 right)}}{w^3}}} hfill \
= frac{{{w^2}{x^2}}}{{{x^{ – 2}}{w^3}}} hfill \
= {w^{2 – 3}}{x^{2 – left( { – 2} right)}} hfill \
= w{x^4} hfill \
hfill \
{text{f)}}{left( {frac{{{{left( {ab} right)}^{ – 1}}}}{{{a^2}{b^{ – 3}}}}} right)^{ – 2}} = {left( {frac{{{a^{ – 1}}{b^{ – 1}}}}{{{a^2}{b^{ – 3}}}}} right)^2} hfill \
= {left( {{a^{ – 1 – 2}}{b^{ – 1 – left( { – 3} right)}}} right)^{ – 2}} hfill \
= {left( {{a^{ – 3}}{b^4}} right)^{ – 2}} hfill \
= left( {{a^6}{b^{ – 4}}} right) hfill \
= frac{{{a^6}}}{{{b^4}}} hfill \
end{gathered} ]
Result
2 of 2
a) $p^2q$

b) $dfrac{y^2}{x^6}$

c) $dfrac{1}{a^2b^7}$

d) $dfrac{n^6}{m^4}$

e) $wx^4$

f) $dfrac{a^6}{b^4}$

Exercise 5
Step 1
1 of 7
[begin{gathered}
{text{a) }} hfill \
{left( {3x{y^4}} right)^2}{left( {2{x^2}y} right)^3} hfill \
hfill \
= 9{x^2}{y^8} times 8{x^6}{y^3} hfill \
hfill \
= 72{x^8}{y^{11}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$$
x^acdot x^b=x^{a+b}
$$

Step 2
2 of 7
$$
{text{b) }}frac{{{{left( {2{a^3}} right)}^2}}}{{4a{b^2}}} = frac{{4{a^6}}}{{4a{b^2}}} = frac{{{a^5}}}{{{b^2}}}
$$
Use the rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 7
[begin{gathered}
{text{c) }}frac{{{{left( {10x} right)}^{ – 1}} times {y^3}}}{{15{x^3}{y^{ – 3}}}} hfill \
= frac{{{{10}^{ – 1}}{x^{ – 1}}{y^6}}}{{15{x^3}}} hfill \
= frac{{{{10}^{ – 1}}{y^6}}}{{15{x^4}}} hfill \
= frac{{{y^6}}}{{15{x^4} times 10}} hfill \
= frac{{{y^6}}}{{150{x^4}}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 4
4 of 7
$$
{text{d) }}frac{{left( {3{m^4}{n^2}} right)}}{{12{m^{ – 2}}{n^6}}} = frac{{9{m^8}{n^4}}}{{12{m^{ – 2}}{n^6}}} = frac{{3{m^{10}}}}{{4{n^2}}}
$$
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
[begin{gathered}
{text{e) }}frac{{{p^{ – 5}} times {{left( {{r^3}} right)}^2}}}{{{{left( {{p^2}r} right)}^2} times {{left( {{p^{ – 1}}} right)}^2}}}{text{ = }}frac{{{p^{ – 5}}{r^6}}}{{{p^4}{r^2}{p^{ – 2}}}} hfill \
hfill \
= frac{{{r^4}}}{{{p^4} times {p^3}}} = frac{{{r^4}}}{{{p^7}}}{text{ }} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^atimes x^b=x^{a+b}
$$

Step 6
6 of 7
[begin{gathered}
{text{f) }}{left( {frac{{{{left( {{x^3}y} right)}^{ – 1}} times left( {{x^4}{y^3}} right)}}{{{{left( {{x^2}{y^{ – 3}}} right)}^{ – 2}}}}} right)^{ – 1}} = {left( {frac{{{x^{ – 3}}{y^{ – 1}}{x^4}{y^3}}}{{{x^{ – 4}}{y^6}}}} right)^{ – 1}} hfill \
= {left( {frac{{x{y^{ – 1}}{x^4}}}{{{y^3}}}} right)^{ – 1}} = {left( {frac{{xleft( {{x^4}} right)}}{{{y^4}}}} right)^{ – 1}} hfill \
= {left( {frac{{{x^5}}}{{{y^4}}}} right)^{ – 1}} = frac{{{y^4}}}{{{x^5}}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^atimes x^b=x^{a+b}
$$

Result
7 of 7
a) $72x^8y^{11}$

b) $dfrac{a^5}{b^2}$

c) $dfrac{y^6}{150x^4}$

d) $dfrac{3m^{10}}{4n^2}$

e) $dfrac{r^4}{p^7}$

f) $dfrac{y^4}{x^5}$

Exercise 6
Step 1
1 of 7
[begin{gathered}
{text{a) }} hfill \
{left( {{x^4}} right)^{frac{1}{2}}}{left( {{x^6}} right)^{ – frac{1}{3}}} hfill \
= {x^2} cdot {x^{ – 2}} hfill \
= frac{{{x^2}}}{{{x^2}}} hfill \
= 1 hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 2
2 of 7
[begin{gathered}
{text{b)}} hfill \
frac{{9{{left( {{c^8}} right)}^{0.5}}}}{{{{left( {16{c^{12}}} right)}^{0.25}}}} = frac{{9{c^2}}}{{{{16}^{0.25}}{c^3}}} hfill \
= frac{{9left( {{c^4}} right)}}{{2{c^3}}} hfill \
= frac{9}{2}{c^{4 – 3}} hfill \
= frac{9}{2}c hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 7
[begin{gathered}
{text{c)}} hfill \
frac{{sqrt {25{m^{ – 12}}} }}{{sqrt {36{m^{10}}} }} = frac{{sqrt {25} {m^{ – frac{{12}}{2}}}}}{{sqrt {36} {m^{frac{{10}}{2}}}}} = frac{{5{m^{ – 6}}}}{{6{m^5}}} hfill \
= frac{5}{6}left( {{m^{ – 6 – 5}}} right) = frac{5}{6}{m^{ – 11}} hfill \
= frac{5}{{6{m^{11}}}} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 7
[begin{gathered}
{text{d)}} hfill \
sqrt[3]{{frac{{{{left( {10{x^3}} right)}^2}}}{{{{left( {10{x^6}} right)}^{ – 1}}}}}} = frac{{{{left( {{{left( {10{x^3}} right)}^2}} right)}^{frac{1}{3}}}}}{{{{left( {{{left( {10{x^6}} right)}^{ – 1}}} right)}^{frac{1}{3}}}}} hfill \
= frac{{{{left( {10{x^3}} right)}^{frac{2}{3}}}}}{{{{left( {10{x^6}} right)}^{frac{{ – 1}}{3}}}}} hfill \
= frac{{{{10}^{frac{2}{3}}}{x^2}}}{{{{10}^{frac{{ – 1}}{3}}}{x^{ – 2}}}} hfill \
= {10^{frac{2}{3} – frac{{ – 1}}{3}}}{x^{2 – left( { – 2} right)}} hfill \
= 10{x^4} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 5
5 of 7
[begin{gathered}
{text{e)}} hfill \
{left( {frac{{{{left( {32{x^5}} right)}^{ – 2}}}}{{{{left( {{x^{ – 1}}} right)}^{10}}}}} right)^{0.2}} hfill \
= {left( {frac{{{{32}^{ – 2}}{x^{ – 10}}}}{{{x^{ – 10}}}}} right)^{0.2}} hfill \
= {left( {{{32}^{ – 2}}} right)^{0.2}} hfill \
= {32^{ – frac{2}{5}}} hfill \
= frac{1}{{{{32}^{frac{2}{5}}}}} hfill \
= frac{1}{{{{left( {{2^5}} right)}^{frac{2}{5}}}}} hfill \
= frac{1}{{{2^2}}} hfill \
= frac{1}{4} hfill \
end{gathered} ]
Use the following rules:

$(xy)^a=x^acdot y^a$

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 6
6 of 7
[begin{gathered}
{text{f)}} hfill \
frac{{sqrt[{10}]{{1024{x^{20}}}}}}{{sqrt[9]{{512{x^{27}}}}}} = frac{{sqrt[{10}]{{{2^{10}}{x^{20}}}}}}{{sqrt[9]{{{2^9}{x^{27}}}}}} hfill \
= frac{{2{x^2}}}{{2{x^3}}} = {x^{2 – 3}} hfill \
= {x^{ – 1}} = frac{1}{x} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
7 of 7
a) 1

b) $dfrac{9c}{2}$

c) $dfrac{5}{6m^{11}}$

d) $10x^4$

e) $dfrac{1}{4}$

f) $dfrac{1}{x}$

Exercise 7
Step 1
1 of 5
[begin{gathered}
{text{a)}} hfill \
{left( {16{x^6}{y^4}} right)^{frac{1}{2}}} = {16^{frac{1}{2}}}{x^{6left( {frac{1}{2}} right)}}{y^{4left( {frac{1}{2}} right)}} hfill \
= 4{x^3}{y^2} hfill \
= 4{left( 2 right)^3}{left( 1 right)^2} hfill \
= 4left( 8 right)left( 1 right) hfill \
= 32 hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
frac{{{{left( {9{p^{ – 2}}} right)}^{frac{1}{2}}}}}{{6{p^2}}} = frac{{{9^{frac{1}{2}}}{p^{ – 2left( {frac{1}{2}} right)}}}}{{6{p^2}}} hfill \
= frac{{3{p^{ – 1}}}}{{6{p^2}}} hfill \
= frac{3}{6}{p^{ – 1 – 2}} hfill \
= frac{1}{2}{p^{ – 3}} hfill \
= frac{1}{{2{p^3}}} hfill \
= frac{1}{{2{{left( 3 right)}^3}}} hfill \
= frac{1}{{54}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 5
[begin{gathered}
{text{c) }} hfill \
frac{{{{left( {81{x^4}{y^6}} right)}^{frac{1}{2}}}}}{{8{{left( {{x^9}{y^3}} right)}^{frac{1}{3}}}}} = frac{{{{81}^{^{frac{1}{2}}}}{y^{4left( {frac{1}{2}} right)}}{x^{6left( {frac{1}{2}} right)}}}}{{8left( {{x^{9left( {frac{1}{3}} right)}}{y^{3left( {frac{1}{3}} right)}}} right)}} hfill \
= frac{{9{x^2}{y^3}}}{{8left( {{x^3}y} right)}} hfill \
= frac{9}{8}{x^{2 – 3}}{y^{3 – 1}} hfill \
= frac{9}{8}{x^{ – 1}}{y^2} hfill \
= frac{{9{y^2}}}{{8x}} hfill \
= frac{{9{{left( 5 right)}^2}}}{{8left( {10} right)}} hfill \
= frac{{225}}{{80}}{text{ or }}frac{{45}}{{16}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 5
[begin{gathered}
{text{d)}} hfill \
{left( {frac{{{{left( {25{a^4}} right)}^{ – 1}}}}{{{{left( {7{a^{ – 2}}b} right)}^2}}}} right)^{frac{1}{2}}} hfill \
left( {frac{{{{25}^{ – 1}}{a^{4left( { – 1} right)}}}}{{{7^2}{a^{ – 2left( 2 right)}}{b^2}}}} right) hfill \
= {left( {frac{{{{25}^{ – 1}}{a^{ – 4}}}}{{49{a^{ – 4}}{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{{{{25}^{ – 1}}}}{{49{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{49{b^2} times 25}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{1225{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{{{35}^2}{b^2}}}} right)^{frac{1}{2}}} hfill \
= frac{1}{{35b}} = frac{1}{{350}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
5 of 5
a) $4x^3y^2=32$

b) $dfrac{1}{2p^3}=dfrac{1}{54}$

c) $dfrac{9y^2}{8x}=frac{45}{16}$

d) $dfrac{1}{35b}=dfrac{1}{350}$

Exercise 8
Step 1
1 of 5
[begin{gathered}
{text{a)}}{left( {sqrt {10,000x} } right)^{frac{3}{2}}} = {left( {10,000{x^{frac{1}{2}}}} right)^{frac{3}{2}}} hfill \
= {left( {10,000x} right)^{frac{1}{2}left( {frac{3}{2}} right)}} hfill \
= {left( {10,000x} right)^{frac{3}{4}}} hfill \
= sqrt[4]{{10,{{000}^3}{x^{frac{3}{4}}}}} hfill \
= 1000{x^{frac{3}{4}}} hfill \
= 1000{left( {16} right)^{frac{3}{4}}} hfill \
= 1000sqrt[4]{{{{16}^3}}} hfill \
= 1000sqrt[4]{{{{left( {{2^4}} right)}^3}}} hfill \
= 1000left( {{2^3}} right) hfill \
= 8,000 hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
{left( {frac{{{{left( {4{x^3}} right)}^4}}}{{{{left( {{x^3}} right)}^6}}}} right)^{ – 0.5}} = {left( {frac{{{4^{left( 4 right)}}{x^{3left( 4 right)}}}}{{{x^{3left( 6 right)}}}}} right)^{ – 0.5}} hfill \
= {left( {256{x^{12 – 18}}} right)^{ – 0.5}} hfill \
= {left( {256{x^{ – 6}}} right)^{ – 0.5}} hfill \
= {256^{frac{1}{2}}}{x^3} hfill \
= frac{{{x^3}}}{{16}} hfill \
= frac{{{5^3}}}{{16}} hfill \
= frac{{125}}{{16}} hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 5
[begin{gathered}
{text{c)}}{left( { – 2{a^2}b} right)^{ – 3}}sqrt {25{a^4}{b^6}} hfill \
= left( {{2^{ – 3}}{a^{ – 6}}{b^{ – 3}}} right)left( {{{25}^{frac{1}{2}}}{a^2}{b^3}} right) hfill \
= frac{{ – 5}}{8}{a^{ – 6 + 2}}{b^{ – 3 + 3}} hfill \
= frac{{ – 5}}{8}{a^{ – 4}}{b^0} hfill \
= frac{{ – 5}}{{8{a^4}}} hfill \
= frac{{ – 5}}{{8{{left( 1 right)}^4}}} hfill \
= frac{{ – 5}}{8} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$x^atimes x^b=x^{a+b}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 5
[begin{gathered}
{text{d) }} hfill \
sqrt {frac{{left( {18{m^{ – 5}}{n^2}} right)left( {32{m^2}n} right)}}{{4m{n^{ – 3}}}}} = sqrt {frac{{left( {18} right)left( {32} right){m^{ – 5 + 2}}{n^{2 + 1}}}}{{4m{n^{ – 3}}}}} hfill \
= sqrt {left( {frac{{576{m^{ – 3}}n3}}{{4m{n^{ – 3}}}}} right)} hfill \
= {left( {144{m^{ – 3 – 1}}{n^{3 – left( { – 3} right)}}} right)^{frac{1}{2}}} hfill \
= {left( {12{m^{ – 4}}{n^6}} right)^{frac{1}{2}}} hfill \
= left( {{{12}^{^{frac{1}{2}}}}{m^{ – 4left( {frac{1}{2}} right)}}{n^{6left( {frac{1}{2}} right)}}} right) hfill \
= left( {6{m^{ – 2}}{n^3}} right) hfill \
= frac{{6{n^3}}}{{{m^2}}} hfill \
= frac{{6{{left( 1 right)}^3}}}{{{{10}^2}}} hfill \
= frac{{{6^3}}}{{{{10}^2}}} hfill \
= frac{{12}}{{100}}{text{ or }}frac{3}{{25}} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$x^atimes x^b=x^{a+b}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
5 of 5
a) $10000x^{frac{3}{4}}=8000$

b) $dfrac{x^3}{16}=dfrac{125}{16}$

c) $-dfrac{5}{8a^4}=-dfrac{5}{8}$

d) $dfrac{12n^3}{m^2}=dfrac{3}{25}$

Exercise 9
Step 1
1 of 5
[begin{gathered}
{text{a)}} hfill \
{left( {36{m^4}{n^6}} right)^{0.5}}{left( {81{m^{12}}{n^8}} right)^{0.25}} hfill \
= {left( {36{m^4}{n^6}} right)^{frac{1}{2}}}{left( {81{m^{12}}{n^8}} right)^{frac{1}{4}}} hfill \
= left( {6{m^2}{n^3}} right)left( {3{m^3}{n^2}} right) hfill \
= 18{m^{2 + 3}}{n^{3 + 2}} hfill \
= 18{m^5}{n^5} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$$
a^mcdot a^n=a^{m+n}
$$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
{left( {frac{{{{left( {6{x^3}} right)}^2}left( {6{y^3}} right)}}{{{{left( {9xy} right)}^6}}}} right)^{frac{{ – 1}}{3}}} = {left( {frac{{36 times 6}}{{{9^6}{y^3}}}} right)^{ – frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{36 times 6}}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{216}}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{{6^3}}}} right)^{frac{1}{3}}} hfill \
= frac{{{9^2}y}}{6} hfill \
= frac{{81y}}{6}{text{ or }}frac{{27y}}{2} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$a^mcdot a^n=a^{m+n}$

$$
dfrac{a^m}{a^n}=a^{m-n}
$$

Step 3
3 of 5
[begin{gathered}
{text{c)}} hfill \
{left( {frac{{sqrt {64{a^{12}}} }}{{{{left( {{a^{1.5}}} right)}^{ – 6}}}}} right)^{frac{2}{3}}} = {left( {frac{{8{a^6}}}{{{a^{ – 9}}}}} right)^{frac{2}{3}}} hfill \
= {left( {8{a^{15}}} right)^{frac{2}{3}}} hfill \
= sqrt[3]{{{{left( {8{a^{15}}} right)}^2}}} hfill \
= sqrt[3]{{64{a^{30}}}} hfill \
= 4{a^{10}} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$a^mcdot a^n=a^{m+n}$

$$
dfrac{a^m}{a^n}=a^{m-n}
$$

Step 4
4 of 5
[begin{gathered}
{text{d)}}{left( {frac{{{{left( {{x^{18}}} right)}^{frac{{ – 1}}{6}}}}}{{sqrt[5]{{243}}{x^{10}}}}} right)^{0.5}} = {left( {frac{{{x^{ – 3}}}}{{{{243}^{frac{1}{5}}}{x^2}}}} right)^{0.5}} hfill \
= {left( {frac{{{x^{ – 3 – 2}}}}{3}} right)^{0.5}} hfill \
= frac{{{x^{ – 5left( {0.5} right)}}}}{{{3^{0.5}}}} hfill \
= frac{{{x^{ – frac{5}{2}}}}}{{sqrt 3 }} hfill \
= frac{1}{{sqrt 3 {x^{frac{5}{2}}}}} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$a^mcdot a^n=a^{m+n}$

$dfrac{a^m}{a^n}=a^{m-n}$

$$
a^{-n}=dfrac{1}{a^n}
$$

Result
5 of 5
a) $18m^5n^5$

b) $dfrac{27y}{2}$

c) $4a^{10}$

d) $dfrac{1}{sqrt{3}x^{frac{5}{2}}}$

Exercise 10
Step 1
1 of 3
[begin{gathered}
{text{Simplify the expression by applying rules of exponents}} hfill \
hfill \
frac{{{{left( {16{x^8}{y^{ – 4}}} right)}^{frac{1}{4}}}}}{{32{x^{ – 2}}{y^8}}} = frac{{{{16}^{frac{1}{4}}}{x^2}{y^{ – 1}}}}{{32{x^{ – 2}}{y^8}}} hfill \
hfill \
= frac{2}{{32}}left( {{x^{2 – left( { – 2} right)}}{y^{ – 1 – 8}}} right) hfill \
hfill \
= frac{1}{{16}}left( {{x^4}{y^9}} right) hfill \
hfill \
= frac{{{x^4}}}{{16{y^9}}} hfill \
end{gathered} ]
Step 2
2 of 3
[begin{gathered}
{text{a) If }}M = 1 hfill \
frac{{{x^4}}}{{16{y^9}}} = 1 hfill \
{x^4} = 16{y^9} hfill \
{text{By inspection, we see that a solution is}} hfill \
x = 2{text{ and }}y = 1{text{ because}} hfill \
{2^4} = 16 hfill \
hfill \
{text{b)}};{text{If }}M > 1 hfill \
{text{ }}frac{{{x^4}}}{{16{y^9}}} > 1 hfill \
{text{Based on part}}left( {text{a}} right),{text{ we can expect that}} hfill \
{text{this happens when }}x > 2{text{ and/or }},{text{0}} < y leqslant 1 hfill \
{text{An example would be}} hfill \
x = 3{text{ and }}y = 1 hfill \
hfill \
{text{c) 0}} < M < 1 hfill \
0 < frac{{{x^4}}}{{16{y^9}}} < 1 hfill \
{text{This happens when }}0 < x < 2{text{ while }}y = 1 hfill \
{text{An example would be}} hfill \
x = 1{text{ and }}y = 1 hfill \
hfill \
{text{d) }}M < 0 hfill \
frac{{{x^4}}}{{16{y^9}}} < 0 hfill \
{x^4}{text{ has even exponent so it is always positive}}{text{. To}} hfill \
{text{make }}M{text{ negative, }}y{text{ must be negative}} hfill \
hfill \
{text{An example would be}} hfill \
x = 3{text{ and }}y = – 1 hfill \
end{gathered} ]
Result
3 of 3
$M=dfrac{x^4}{16y^9}$

a) $x=2$ , $y=1$

b) $x=3$, $y=1$

c) $x=1$, $y=1$

d) $x=3$ , $y=-1$

Exercise 11
Step 1
1 of 2
[begin{gathered}
{text{a) The surface area to volume ratio is }}frac{{SA}}{V} hfill \
frac{{SA}}{V} = frac{{2pi rh + 2pi {r^2}}}{{pi {r^2}h}} hfill \
hfill \
= frac{{pi rleft( {2h + 2r} right)}}{{pi rleft( {rh} right)}} hfill \
hfill \
= frac{{left( {2h + 2r} right)}}{{rh}} hfill \
hfill \
{text{b) when }}r = 0.8{text{ cm and }}h = 12{text{ cm}} hfill \
hfill \
frac{{left( {2h + 2r} right)}}{{rh}} = frac{{left( {2left( {12} right) + 2left( {0.8} right)} right)}}{{left( {0.8} right)left( {12} right)}} hfill \
hfill \
= frac{{left( {24 + 1.6} right)}}{{9.6}} hfill \
hfill \
= frac{{8{text{ cm}}}}{{3{text{ c}}{{text{m}}^{text{2}}}}}{text{ or }}2.67{text{ c}}{{text{m}}^{ – 1}} hfill \
end{gathered} ]
Result
2 of 2
a) $dfrac{2h+2r}{hr}$

b) $dfrac{SA}{V}=2.67;text{cm}^{-1}$

Exercise 12
Step 1
1 of 2
[begin{gathered}
{text{We shall simplify the expressions first}} hfill \
frac{{{{text{y}}^{ – 4}}{{left( {{x^2}} right)}^{ – 3}}{y^{ – 3}}}}{{{x^{ – 5}}{{left( {{y^{ – 4}}} right)}^2}}} = frac{{{y^{ – 4}}left( {{x^{ – 6}}} right){y^{ – 3}}}}{{{x^{ – 5}}{y^{ – 8}}}} hfill \
= frac{{{y^{ – 7}}{x^{ – 6}}}}{{{x^{ – 5}}{y^{ – 8}}}} hfill \
= {y^{ – 7 – 8}}{x^{ – 6 – 5}} hfill \
= frac{y}{x} hfill \
{text{Substitute the given values}} hfill \
frac{y}{x} = frac{{ – 3}}{2} hfill \
hfill \
{text{We shall simplify the expressions first}} hfill \
frac{{{x^{ – 3}}{{left( {{y^{ – 1}}} right)}^2}}}{{left( {{x^{ – 5}}} right)left( {{y^4}} right)}} = frac{{{x^{ – 3}}{y^{ – 2}}}}{{{x^{ – 5}}{y^4}}} hfill \
= {x^{ – 3 – left( { – 5} right)}}{y^{ – 2 – 4}} hfill \
= {x^2}{y^{ – 6}} hfill \
= frac{{{x^2}}}{{{y^6}}} hfill \
{text{Substitute the given values}} hfill \
frac{{{x^2}}}{{{y^6}}} = frac{{{2^2}}}{{{3^6}}} hfill \
= frac{4}{729} hfill \
hfill \
{text{We shall simplify the expressions first}} hfill \
left( {{y^{ – 5}}} right){left( {{x^5}} right)^{ – 2}}left( {{y^2}} right){left( {{x^{ – 3}}} right)^{ – 4}} = {y^{ – 5 + 2}}{x^{ – 10 + 12}} hfill \
= {y^{ – 3}}{x^2} hfill \
= frac{{{x^2}}}{{{y^3}}} hfill \
{text{Substitute the given values}} hfill \
= frac{{{2^2}}}{{{3^3}}} hfill \
= frac{4}{{27}} hfill \
hfill \
{text{The order from least to greatest is}} hfill \
frac{{ – 3}}{2},frac{4}{{27}},frac{4}{9} hfill \
end{gathered} ]
Result
2 of 2
[begin{gathered}
{text{The order from least to greatest is}} hfill \
frac{{ – 3}}{2},frac{4}{{27}},frac{4}{729} hfill \
end{gathered} ]
Exercise 13
Step 1
1 of 3
$$
bold{Similarities}
$$
$$
bold{Differences}
$$
Step 2
2 of 3
Both processes need to follow the order of operations.

(1) terms inside parenthesis

(2) exponent

(3) multiplication or division (whichever comes first)

(4) addition or subtraction (whichever comes first)

In simplifying algebraic expression, you can add or subtract similar terms (you cannot add unlike terms), however, you can multiply or divide terms regardless of whether they are similar or not.
Result
3 of 3
Both processes need to follow the order of operations. The difference is that for algebraic expression, you can only add or subtract similar terms.
Exercise 14
Step 1
1 of 2
[begin{gathered}
{text{a) We need to express the radius }}r{text{ in terms of the volume }}V hfill \
V = frac{4}{3}pi {r^3} hfill \
{r^3} = frac{V}{{frac{4}{3}pi }} hfill \
{r^3} = frac{{3V}}{{4pi }} hfill \
r = sqrt[3]{{frac{{3V}}{{4pi }}}}{text{ or }}r = {left( {frac{{3V}}{{4pi }}} right)^{frac{1}{3}}} hfill \
hfill \
{text{b) We need to find }}r{text{ when }}V = frac{{256}}{3}{{text{m}}^{text{3}}} hfill \
r = {left( {frac{{3V}}{{4pi }}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{3left( {frac{{256}}{3}{{text{m}}^{text{3}}}} right)}}{{4pi }}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{256}}{4}{{text{m}}^{text{3}}}} right)^{frac{1}{3}}} hfill \
= {left( {64{{text{m}}^{text{3}}}} right)^{frac{1}{3}}} hfill \
= sqrt[3]{{64{{text{m}}^{text{3}}}}} hfill \
r = 4{text{ m}} hfill \
hfill \
hfill \
end{gathered} ]
Result
2 of 2
a) $r=sqrt[3]{dfrac{3V}{4pi}}=left(dfrac{3V}{4pi}right)^{frac{1}{3}}$

b) $r=4$ m

Exercise 15
Step 1
1 of 3
Remember that

$x^acdot x^b=x^{a+b}$

$sqrt[m]{a^m}=a$

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 2
2 of 3
$$
frac{{sqrt {xleft( {{x^{2n + 1}}} right)} }}{{sqrt[3]{{{x^{3n}}}}}} = frac{{sqrt {{x^{2n + 2}}} }}{{{x^n}}} = frac{{{{left( {{x^{2n + 2}}} right)}^{frac{1}{2}}}}}{{{x^n}}} = frac{{{x^{n + 1}}}}{{{x^n}}} = {x^{n + 1 – n}} = x
$$
Result
3 of 3
$$
x
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90Β°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0Β° and 360Β°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review