Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Textbook solutions

All Solutions

Page 235: Check Your Understanding

Exercise 1
Step 1
1 of 7
a) $x^4(x^3)=x^{4+3}=x^7$
Use the rule:

$$
x^{a} (x^{b})=x^{a+b}
$$

Step 2
2 of 7
b) $(p^{-3})(p)^5=p^{-3+5}=p^2$
Use the rule:

$$
x^{a}( x^{b})=x^{a+b}
$$

Step 3
3 of 7
c) $dfrac{m^5}{m^{-3}}=m^{5-(-3)}=m^8$
Use the rule:

$$
dfrac{x^{a}}{x^{b}}=x^{a-b}
$$

Step 4
4 of 7
d) $dfrac{a^{-4}}{a^{-2}}=a^{-4-(-2)}=a^{-2}=dfrac{1}{a^2}$
Use the rules:

$dfrac{x^{a}}{x^{b}}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 5
5 of 7
e) $(y^3)^2=y^{3(2)}=y^6$
Use the rule:

$$
(x^{a})^b=x^{ab}
$$

Step 6
6 of 7
f) $(k^6)^{-2}=k^{6(-2)}=k^{-12}=dfrac{1}{k^{12}}$
Use the rule:

$(x^{a})^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Result
7 of 7
a) $x^7$

b) $p^2$

c) $m^8$

d) $dfrac{1}{a^2}$

e) $y^6$

f) $dfrac{1}{k^{12}}$

Exercise 2
Step 1
1 of 7
a) $y^{10}(y^4)^{-3}$

$y^{10}(y^4)^{-3}$

$=y^{10}y^{4(-3)}$

$=y^{10}y^{-12}$

$=y^{10+(-12)}$

$=y^{-2}$

$$
=dfrac{1}{y^2}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$$
(x^a)(x^b)=x^{a+b}
$$

Step 2
2 of 7
b) $(x^{-3})^{-3}(x^{-1})^5$

$=x^{-3(-3)}cdot x^{-1(5)}$

$=x^{9}cdot x^{-5}$

$=x^{9-5}$

$$
=x^{4}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$$
(x^a)(x^b)=x^{a+b}
$$

Step 3
3 of 7
c) $dfrac{n^{-4})^3}{(n^{-3})^{-4}}$

$=dfrac{n^{-4(3)}}{n^{-3(-4)}}$

$=dfrac{n^{-12}}{n^{12}}$

$=n^{-12-12}$

$=n^{-24}$

$$
=dfrac{1}{n^{24}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 4
4 of 7
d) $dfrac{w^4(w^{-3})}{(w^{-2})^{-1}}$

$=dfrac{w^{4+(-3)}}{w^{-2(-1)}}$

$=dfrac{w^{1}}{w^2}$

$=w^{1-2}$

$=w^{-1}$

$$
=dfrac{1}{w^{}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 5
5 of 7
e) $dfrac{(x^{-1})^4x}{x^{-3}}$

$=dfrac{x^{-4}cdot x}{x^{-3}}$

$=dfrac{x^{-4+1}}{x^{-3}}$

$=dfrac{x^{-3}}{x^{-3}}$

$=x^{-3-(-3)}$

$=x^0$

$$
=1
$$

Use the rules:

$(x^a)^b=x^{ab}$

$x^acdot x^{b}=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$x^{-a}=dfrac{1}{x^a}$

$x^0=1$ for all $xneq 0$

Step 6
6 of 7
f) $dfrac{(b^{-7})^2}{b(b^{-5})b^9}$

$=dfrac{b^{-7(2)}}{b^{1-5+9}}$

$=dfrac{b^{-14}}{b^5}$

$=b^{-14-5}$

$=b^{-19}$

$$
=dfrac{1}{b^{19}}
$$

Use the rules:

$(x^a)^b=x^{ab}$

$x^acdot x^{b}=x^{a+b}$

$dfrac{x^a}{x^b}=x^{a-b}$

$x^{-a}=dfrac{1}{x^a}$

Result
7 of 7
a) $dfrac{1}{y^2}$

b) $x^4$

c) $dfrac{1}{n^{24}}$

d) $dfrac{1}{w}$

e) $1$

f) $dfrac{1}{b^{19}}$

Exercise 3
Step 1
1 of 2
[begin{gathered}
{text{a) Evaluate the powers}} hfill \
frac{{{x^7}{{left( {{y^2}} right)}^3}}}{{{x^5}{y^4}}} = frac{{{{left( { – 2} right)}^7}{{left( {{3^2}} right)}^3}}}{{{{left( { – 2} right)}^5}{{left( 3 right)}^4}}} hfill \
= frac{{left( { – 128} right)left( {729} right)}}{{left( { – 32} right)left( {81} right)}} hfill \
{text{Multiply}} hfill \
= frac{{ – 93312}}{{ – 2592}} hfill \
{text{Simplify}} hfill \
= 36 hfill \
hfill \
{text{b) Evaluate the powers}} hfill \
frac{{{x^7}{{left( {{y^2}} right)}^3}}}{{{x^5}{y^4}}} = frac{{{x^7}{y^6}}}{{{x^5}{y^4}}} hfill \
= {x^2}{y^2} hfill \
= {left( { – 2} right)^2}{left( 3 right)^2} hfill \
= left( 4 right)left( 9 right) hfill \
{text{Multiply}} hfill \
= 36 hfill \
hfill \
{text{c) A simplified expression is faster to calculate }} hfill \
{text{rather than to substitute the numbers first}}{text{.}} hfill \
hfill \
end{gathered} ]
Result
2 of 2
a) 36

b) $x^2y^2=36$

c) It is often faster to substitute numbers into a simplified form.

Exercise 4
Step 1
1 of 2
[begin{gathered}
{text{a) Evaluate the powers}} hfill \
{left( {p{q^2}} right)^{ – 1}}left( {{p^3}{q^3}} right) = left( {{p^{ – 1}}{q^{ – 2}}} right)left( {{p^3}{q^3}} right) hfill \
= {p^{ – 1 + 3}}{q^{ – 2 + 3}} hfill \
= {p^2}q hfill \
hfill \
{text{b) Evaluate the powers}} hfill \
{left( {frac{{{x^3}}}{y}} right)^{ – 2}} = frac{{{x^{3left( { – 2} right)}}}}{{{y^{ – 2}}}} hfill \
= frac{{{x^{ – 6}}}}{{{y^{ – 2}}}} hfill \
{text{Remember this rule, }}{left( {frac{a}{b}} right)^{ – n}} = {left( {frac{b}{a}} right)^n} hfill \
= frac{{{y^2}}}{{{x^6}}} hfill \
hfill \
{text{c) Evaluate the powers}} hfill \
frac{{{{left( {ab} right)}^{ – 2}}}}{{{b^5}}} = frac{{{a^{ – 2}}{b^{ – 2}}}}{{{b^5}}} hfill \
{text{Simplify the expression}}{text{.}} hfill \
= {a^{ – 2}}{b^{ – 2 – 5}} hfill \
= {a^{ – 2}}{b^{ – 7}} hfill \
{text{Remember this rule, }}{a^{ – n}} = frac{1}{{{a^n}}} hfill \
= frac{1}{{{a^2}{b^7}}} hfill \
hfill \
{text{d) Evaluate the powers}} hfill \
frac{{{m^2}{n^2}}}{{{{left( {{m^3}{n^{ – 2}}} right)}^2}}} = frac{{{m^2}{n^2}}}{{{m^{3left( 2 right)}}{n^{ – 2left( 2 right)}}}} hfill \
= frac{{{m^2}{n^2}}}{{{m^6}{n^4}}} hfill \
{text{Simplfy the expression}}{text{.}} hfill \
= {m^{2 – 6}}{n^{2 – left( { – 4} right)}} hfill \
= {m^{ – 4}}{n^6} hfill \
{text{Remember this rule, }}{left( {frac{a}{b}} right)^{ – n}} = {left( {frac{b}{a}} right)^n} hfill \
= frac{{{m^6}}}{{{n^4}}} hfill \
hfill \
{text{e) }} hfill \
frac{{{{left( {{w^2}x} right)}^2}}}{{{{left( {{x^{ – 1}}} right)}^2}{w^3}}} = frac{{{w^{2left( 2 right)}}{x^2}}}{{{x^{ – 1left( 2 right)}}{w^3}}} hfill \
= frac{{{w^2}{x^2}}}{{{x^{ – 2}}{w^3}}} hfill \
= {w^{2 – 3}}{x^{2 – left( { – 2} right)}} hfill \
= w{x^4} hfill \
hfill \
{text{f)}}{left( {frac{{{{left( {ab} right)}^{ – 1}}}}{{{a^2}{b^{ – 3}}}}} right)^{ – 2}} = {left( {frac{{{a^{ – 1}}{b^{ – 1}}}}{{{a^2}{b^{ – 3}}}}} right)^2} hfill \
= {left( {{a^{ – 1 – 2}}{b^{ – 1 – left( { – 3} right)}}} right)^{ – 2}} hfill \
= {left( {{a^{ – 3}}{b^4}} right)^{ – 2}} hfill \
= left( {{a^6}{b^{ – 4}}} right) hfill \
= frac{{{a^6}}}{{{b^4}}} hfill \
end{gathered} ]
Result
2 of 2
a) $p^2q$

b) $dfrac{y^2}{x^6}$

c) $dfrac{1}{a^2b^7}$

d) $dfrac{n^6}{m^4}$

e) $wx^4$

f) $dfrac{a^6}{b^4}$

Exercise 5
Step 1
1 of 7
[begin{gathered}
{text{a) }} hfill \
{left( {3x{y^4}} right)^2}{left( {2{x^2}y} right)^3} hfill \
hfill \
= 9{x^2}{y^8} times 8{x^6}{y^3} hfill \
hfill \
= 72{x^8}{y^{11}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$$
x^acdot x^b=x^{a+b}
$$

Step 2
2 of 7
$$
{text{b) }}frac{{{{left( {2{a^3}} right)}^2}}}{{4a{b^2}}} = frac{{4{a^6}}}{{4a{b^2}}} = frac{{{a^5}}}{{{b^2}}}
$$
Use the rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 7
[begin{gathered}
{text{c) }}frac{{{{left( {10x} right)}^{ – 1}} times {y^3}}}{{15{x^3}{y^{ – 3}}}} hfill \
= frac{{{{10}^{ – 1}}{x^{ – 1}}{y^6}}}{{15{x^3}}} hfill \
= frac{{{{10}^{ – 1}}{y^6}}}{{15{x^4}}} hfill \
= frac{{{y^6}}}{{15{x^4} times 10}} hfill \
= frac{{{y^6}}}{{150{x^4}}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 4
4 of 7
$$
{text{d) }}frac{{left( {3{m^4}{n^2}} right)}}{{12{m^{ – 2}}{n^6}}} = frac{{9{m^8}{n^4}}}{{12{m^{ – 2}}{n^6}}} = frac{{3{m^{10}}}}{{4{n^2}}}
$$
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

Step 5
5 of 7
[begin{gathered}
{text{e) }}frac{{{p^{ – 5}} times {{left( {{r^3}} right)}^2}}}{{{{left( {{p^2}r} right)}^2} times {{left( {{p^{ – 1}}} right)}^2}}}{text{ = }}frac{{{p^{ – 5}}{r^6}}}{{{p^4}{r^2}{p^{ – 2}}}} hfill \
hfill \
= frac{{{r^4}}}{{{p^4} times {p^3}}} = frac{{{r^4}}}{{{p^7}}}{text{ }} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^atimes x^b=x^{a+b}
$$

Step 6
6 of 7
[begin{gathered}
{text{f) }}{left( {frac{{{{left( {{x^3}y} right)}^{ – 1}} times left( {{x^4}{y^3}} right)}}{{{{left( {{x^2}{y^{ – 3}}} right)}^{ – 2}}}}} right)^{ – 1}} = {left( {frac{{{x^{ – 3}}{y^{ – 1}}{x^4}{y^3}}}{{{x^{ – 4}}{y^6}}}} right)^{ – 1}} hfill \
= {left( {frac{{x{y^{ – 1}}{x^4}}}{{{y^3}}}} right)^{ – 1}} = {left( {frac{{xleft( {{x^4}} right)}}{{{y^4}}}} right)^{ – 1}} hfill \
= {left( {frac{{{x^5}}}{{{y^4}}}} right)^{ – 1}} = frac{{{y^4}}}{{{x^5}}} hfill \
end{gathered} ]
Use the rules:

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$dfrac{1}{x^{-a}}=x^a$

$dfrac{x^a}{x^b}=x^{a-b}$

$$
x^atimes x^b=x^{a+b}
$$

Result
7 of 7
a) $72x^8y^{11}$

b) $dfrac{a^5}{b^2}$

c) $dfrac{y^6}{150x^4}$

d) $dfrac{3m^{10}}{4n^2}$

e) $dfrac{r^4}{p^7}$

f) $dfrac{y^4}{x^5}$

Exercise 6
Step 1
1 of 7
[begin{gathered}
{text{a) }} hfill \
{left( {{x^4}} right)^{frac{1}{2}}}{left( {{x^6}} right)^{ – frac{1}{3}}} hfill \
= {x^2} cdot {x^{ – 2}} hfill \
= frac{{{x^2}}}{{{x^2}}} hfill \
= 1 hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
x^{-a}=dfrac{1}{x^a}
$$

Step 2
2 of 7
[begin{gathered}
{text{b)}} hfill \
frac{{9{{left( {{c^8}} right)}^{0.5}}}}{{{{left( {16{c^{12}}} right)}^{0.25}}}} = frac{{9{c^2}}}{{{{16}^{0.25}}{c^3}}} hfill \
= frac{{9left( {{c^4}} right)}}{{2{c^3}}} hfill \
= frac{9}{2}{c^{4 – 3}} hfill \
= frac{9}{2}c hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 7
[begin{gathered}
{text{c)}} hfill \
frac{{sqrt {25{m^{ – 12}}} }}{{sqrt {36{m^{10}}} }} = frac{{sqrt {25} {m^{ – frac{{12}}{2}}}}}{{sqrt {36} {m^{frac{{10}}{2}}}}} = frac{{5{m^{ – 6}}}}{{6{m^5}}} hfill \
= frac{5}{6}left( {{m^{ – 6 – 5}}} right) = frac{5}{6}{m^{ – 11}} hfill \
= frac{5}{{6{m^{11}}}} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 7
[begin{gathered}
{text{d)}} hfill \
sqrt[3]{{frac{{{{left( {10{x^3}} right)}^2}}}{{{{left( {10{x^6}} right)}^{ – 1}}}}}} = frac{{{{left( {{{left( {10{x^3}} right)}^2}} right)}^{frac{1}{3}}}}}{{{{left( {{{left( {10{x^6}} right)}^{ – 1}}} right)}^{frac{1}{3}}}}} hfill \
= frac{{{{left( {10{x^3}} right)}^{frac{2}{3}}}}}{{{{left( {10{x^6}} right)}^{frac{{ – 1}}{3}}}}} hfill \
= frac{{{{10}^{frac{2}{3}}}{x^2}}}{{{{10}^{frac{{ – 1}}{3}}}{x^{ – 2}}}} hfill \
= {10^{frac{2}{3} – frac{{ – 1}}{3}}}{x^{2 – left( { – 2} right)}} hfill \
= 10{x^4} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 5
5 of 7
[begin{gathered}
{text{e)}} hfill \
{left( {frac{{{{left( {32{x^5}} right)}^{ – 2}}}}{{{{left( {{x^{ – 1}}} right)}^{10}}}}} right)^{0.2}} hfill \
= {left( {frac{{{{32}^{ – 2}}{x^{ – 10}}}}{{{x^{ – 10}}}}} right)^{0.2}} hfill \
= {left( {{{32}^{ – 2}}} right)^{0.2}} hfill \
= {32^{ – frac{2}{5}}} hfill \
= frac{1}{{{{32}^{frac{2}{5}}}}} hfill \
= frac{1}{{{{left( {{2^5}} right)}^{frac{2}{5}}}}} hfill \
= frac{1}{{{2^2}}} hfill \
= frac{1}{4} hfill \
end{gathered} ]
Use the following rules:

$(xy)^a=x^acdot y^a$

$(x^a)^b=x^{ab}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 6
6 of 7
[begin{gathered}
{text{f)}} hfill \
frac{{sqrt[{10}]{{1024{x^{20}}}}}}{{sqrt[9]{{512{x^{27}}}}}} = frac{{sqrt[{10}]{{{2^{10}}{x^{20}}}}}}{{sqrt[9]{{{2^9}{x^{27}}}}}} hfill \
= frac{{2{x^2}}}{{2{x^3}}} = {x^{2 – 3}} hfill \
= {x^{ – 1}} = frac{1}{x} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
7 of 7
a) 1

b) $dfrac{9c}{2}$

c) $dfrac{5}{6m^{11}}$

d) $10x^4$

e) $dfrac{1}{4}$

f) $dfrac{1}{x}$

Exercise 7
Step 1
1 of 5
[begin{gathered}
{text{a)}} hfill \
{left( {16{x^6}{y^4}} right)^{frac{1}{2}}} = {16^{frac{1}{2}}}{x^{6left( {frac{1}{2}} right)}}{y^{4left( {frac{1}{2}} right)}} hfill \
= 4{x^3}{y^2} hfill \
= 4{left( 2 right)^3}{left( 1 right)^2} hfill \
= 4left( 8 right)left( 1 right) hfill \
= 32 hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
frac{{{{left( {9{p^{ – 2}}} right)}^{frac{1}{2}}}}}{{6{p^2}}} = frac{{{9^{frac{1}{2}}}{p^{ – 2left( {frac{1}{2}} right)}}}}{{6{p^2}}} hfill \
= frac{{3{p^{ – 1}}}}{{6{p^2}}} hfill \
= frac{3}{6}{p^{ – 1 – 2}} hfill \
= frac{1}{2}{p^{ – 3}} hfill \
= frac{1}{{2{p^3}}} hfill \
= frac{1}{{2{{left( 3 right)}^3}}} hfill \
= frac{1}{{54}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 5
[begin{gathered}
{text{c) }} hfill \
frac{{{{left( {81{x^4}{y^6}} right)}^{frac{1}{2}}}}}{{8{{left( {{x^9}{y^3}} right)}^{frac{1}{3}}}}} = frac{{{{81}^{^{frac{1}{2}}}}{y^{4left( {frac{1}{2}} right)}}{x^{6left( {frac{1}{2}} right)}}}}{{8left( {{x^{9left( {frac{1}{3}} right)}}{y^{3left( {frac{1}{3}} right)}}} right)}} hfill \
= frac{{9{x^2}{y^3}}}{{8left( {{x^3}y} right)}} hfill \
= frac{9}{8}{x^{2 – 3}}{y^{3 – 1}} hfill \
= frac{9}{8}{x^{ – 1}}{y^2} hfill \
= frac{{9{y^2}}}{{8x}} hfill \
= frac{{9{{left( 5 right)}^2}}}{{8left( {10} right)}} hfill \
= frac{{225}}{{80}}{text{ or }}frac{{45}}{{16}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 5
[begin{gathered}
{text{d)}} hfill \
{left( {frac{{{{left( {25{a^4}} right)}^{ – 1}}}}{{{{left( {7{a^{ – 2}}b} right)}^2}}}} right)^{frac{1}{2}}} hfill \
left( {frac{{{{25}^{ – 1}}{a^{4left( { – 1} right)}}}}{{{7^2}{a^{ – 2left( 2 right)}}{b^2}}}} right) hfill \
= {left( {frac{{{{25}^{ – 1}}{a^{ – 4}}}}{{49{a^{ – 4}}{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{{{{25}^{ – 1}}}}{{49{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{49{b^2} times 25}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{1225{b^2}}}} right)^{frac{1}{2}}} hfill \
= {left( {frac{1}{{{{35}^2}{b^2}}}} right)^{frac{1}{2}}} hfill \
= frac{1}{{35b}} = frac{1}{{350}} hfill \
end{gathered} ]
Use the rule:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
5 of 5
a) $4x^3y^2=32$

b) $dfrac{1}{2p^3}=dfrac{1}{54}$

c) $dfrac{9y^2}{8x}=frac{45}{16}$

d) $dfrac{1}{35b}=dfrac{1}{350}$

Exercise 8
Step 1
1 of 5
[begin{gathered}
{text{a)}}{left( {sqrt {10,000x} } right)^{frac{3}{2}}} = {left( {10,000{x^{frac{1}{2}}}} right)^{frac{3}{2}}} hfill \
= {left( {10,000x} right)^{frac{1}{2}left( {frac{3}{2}} right)}} hfill \
= {left( {10,000x} right)^{frac{3}{4}}} hfill \
= sqrt[4]{{10,{{000}^3}{x^{frac{3}{4}}}}} hfill \
= 1000{x^{frac{3}{4}}} hfill \
= 1000{left( {16} right)^{frac{3}{4}}} hfill \
= 1000sqrt[4]{{{{16}^3}}} hfill \
= 1000sqrt[4]{{{{left( {{2^4}} right)}^3}}} hfill \
= 1000left( {{2^3}} right) hfill \
= 8,000 hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
{left( {frac{{{{left( {4{x^3}} right)}^4}}}{{{{left( {{x^3}} right)}^6}}}} right)^{ – 0.5}} = {left( {frac{{{4^{left( 4 right)}}{x^{3left( 4 right)}}}}{{{x^{3left( 6 right)}}}}} right)^{ – 0.5}} hfill \
= {left( {256{x^{12 – 18}}} right)^{ – 0.5}} hfill \
= {left( {256{x^{ – 6}}} right)^{ – 0.5}} hfill \
= {256^{frac{1}{2}}}{x^3} hfill \
= frac{{{x^3}}}{{16}} hfill \
= frac{{{5^3}}}{{16}} hfill \
= frac{{125}}{{16}} hfill \
end{gathered} ]
Use the following rules:

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 3
3 of 5
[begin{gathered}
{text{c)}}{left( { – 2{a^2}b} right)^{ – 3}}sqrt {25{a^4}{b^6}} hfill \
= left( {{2^{ – 3}}{a^{ – 6}}{b^{ – 3}}} right)left( {{{25}^{frac{1}{2}}}{a^2}{b^3}} right) hfill \
= frac{{ – 5}}{8}{a^{ – 6 + 2}}{b^{ – 3 + 3}} hfill \
= frac{{ – 5}}{8}{a^{ – 4}}{b^0} hfill \
= frac{{ – 5}}{{8{a^4}}} hfill \
= frac{{ – 5}}{{8{{left( 1 right)}^4}}} hfill \
= frac{{ – 5}}{8} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$x^atimes x^b=x^{a+b}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 4
4 of 5
[begin{gathered}
{text{d) }} hfill \
sqrt {frac{{left( {18{m^{ – 5}}{n^2}} right)left( {32{m^2}n} right)}}{{4m{n^{ – 3}}}}} = sqrt {frac{{left( {18} right)left( {32} right){m^{ – 5 + 2}}{n^{2 + 1}}}}{{4m{n^{ – 3}}}}} hfill \
= sqrt {left( {frac{{576{m^{ – 3}}n3}}{{4m{n^{ – 3}}}}} right)} hfill \
= {left( {144{m^{ – 3 – 1}}{n^{3 – left( { – 3} right)}}} right)^{frac{1}{2}}} hfill \
= {left( {12{m^{ – 4}}{n^6}} right)^{frac{1}{2}}} hfill \
= left( {{{12}^{^{frac{1}{2}}}}{m^{ – 4left( {frac{1}{2}} right)}}{n^{6left( {frac{1}{2}} right)}}} right) hfill \
= left( {6{m^{ – 2}}{n^3}} right) hfill \
= frac{{6{n^3}}}{{{m^2}}} hfill \
= frac{{6{{left( 1 right)}^3}}}{{{{10}^2}}} hfill \
= frac{{{6^3}}}{{{{10}^2}}} hfill \
= frac{{12}}{{100}}{text{ or }}frac{3}{{25}} hfill \
end{gathered} ]
Use the following rules:

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$(x^a)^b=x^{ab}$

$x^atimes x^b=x^{a+b}$

$x^{-a}=dfrac{1}{x^a}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Result
5 of 5
a) $10000x^{frac{3}{4}}=8000$

b) $dfrac{x^3}{16}=dfrac{125}{16}$

c) $-dfrac{5}{8a^4}=-dfrac{5}{8}$

d) $dfrac{12n^3}{m^2}=dfrac{3}{25}$

Exercise 9
Step 1
1 of 5
[begin{gathered}
{text{a)}} hfill \
{left( {36{m^4}{n^6}} right)^{0.5}}{left( {81{m^{12}}{n^8}} right)^{0.25}} hfill \
= {left( {36{m^4}{n^6}} right)^{frac{1}{2}}}{left( {81{m^{12}}{n^8}} right)^{frac{1}{4}}} hfill \
= left( {6{m^2}{n^3}} right)left( {3{m^3}{n^2}} right) hfill \
= 18{m^{2 + 3}}{n^{3 + 2}} hfill \
= 18{m^5}{n^5} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$$
a^mcdot a^n=a^{m+n}
$$

Step 2
2 of 5
[begin{gathered}
{text{b)}} hfill \
{left( {frac{{{{left( {6{x^3}} right)}^2}left( {6{y^3}} right)}}{{{{left( {9xy} right)}^6}}}} right)^{frac{{ – 1}}{3}}} = {left( {frac{{36 times 6}}{{{9^6}{y^3}}}} right)^{ – frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{36 times 6}}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{216}}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{{9^6}{y^3}}}{{{6^3}}}} right)^{frac{1}{3}}} hfill \
= frac{{{9^2}y}}{6} hfill \
= frac{{81y}}{6}{text{ or }}frac{{27y}}{2} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$a^mcdot a^n=a^{m+n}$

$$
dfrac{a^m}{a^n}=a^{m-n}
$$

Step 3
3 of 5
[begin{gathered}
{text{c)}} hfill \
{left( {frac{{sqrt {64{a^{12}}} }}{{{{left( {{a^{1.5}}} right)}^{ – 6}}}}} right)^{frac{2}{3}}} = {left( {frac{{8{a^6}}}{{{a^{ – 9}}}}} right)^{frac{2}{3}}} hfill \
= {left( {8{a^{15}}} right)^{frac{2}{3}}} hfill \
= sqrt[3]{{{{left( {8{a^{15}}} right)}^2}}} hfill \
= sqrt[3]{{64{a^{30}}}} hfill \
= 4{a^{10}} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$a^mcdot a^n=a^{m+n}$

$$
dfrac{a^m}{a^n}=a^{m-n}
$$

Step 4
4 of 5
[begin{gathered}
{text{d)}}{left( {frac{{{{left( {{x^{18}}} right)}^{frac{{ – 1}}{6}}}}}{{sqrt[5]{{243}}{x^{10}}}}} right)^{0.5}} = {left( {frac{{{x^{ – 3}}}}{{{{243}^{frac{1}{5}}}{x^2}}}} right)^{0.5}} hfill \
= {left( {frac{{{x^{ – 3 – 2}}}}{3}} right)^{0.5}} hfill \
= frac{{{x^{ – 5left( {0.5} right)}}}}{{{3^{0.5}}}} hfill \
= frac{{{x^{ – frac{5}{2}}}}}{{sqrt 3 }} hfill \
= frac{1}{{sqrt 3 {x^{frac{5}{2}}}}} hfill \
end{gathered} ]
Use the rules:

$(a^m)^n=a^{mn}$

$sqrt[m]{a^n}=a^{frac{n}{m}}$

$a^mcdot a^n=a^{m+n}$

$dfrac{a^m}{a^n}=a^{m-n}$

$$
a^{-n}=dfrac{1}{a^n}
$$

Result
5 of 5
a) $18m^5n^5$

b) $dfrac{27y}{2}$

c) $4a^{10}$

d) $dfrac{1}{sqrt{3}x^{frac{5}{2}}}$

Exercise 10
Step 1
1 of 3
[begin{gathered}
{text{Simplify the expression by applying rules of exponents}} hfill \
hfill \
frac{{{{left( {16{x^8}{y^{ – 4}}} right)}^{frac{1}{4}}}}}{{32{x^{ – 2}}{y^8}}} = frac{{{{16}^{frac{1}{4}}}{x^2}{y^{ – 1}}}}{{32{x^{ – 2}}{y^8}}} hfill \
hfill \
= frac{2}{{32}}left( {{x^{2 – left( { – 2} right)}}{y^{ – 1 – 8}}} right) hfill \
hfill \
= frac{1}{{16}}left( {{x^4}{y^9}} right) hfill \
hfill \
= frac{{{x^4}}}{{16{y^9}}} hfill \
end{gathered} ]
Step 2
2 of 3
[begin{gathered}
{text{a) If }}M = 1 hfill \
frac{{{x^4}}}{{16{y^9}}} = 1 hfill \
{x^4} = 16{y^9} hfill \
{text{By inspection, we see that a solution is}} hfill \
x = 2{text{ and }}y = 1{text{ because}} hfill \
{2^4} = 16 hfill \
hfill \
{text{b)}};{text{If }}M > 1 hfill \
{text{ }}frac{{{x^4}}}{{16{y^9}}} > 1 hfill \
{text{Based on part}}left( {text{a}} right),{text{ we can expect that}} hfill \
{text{this happens when }}x > 2{text{ and/or }},{text{0}} < y leqslant 1 hfill \
{text{An example would be}} hfill \
x = 3{text{ and }}y = 1 hfill \
hfill \
{text{c) 0}} < M < 1 hfill \
0 < frac{{{x^4}}}{{16{y^9}}} < 1 hfill \
{text{This happens when }}0 < x < 2{text{ while }}y = 1 hfill \
{text{An example would be}} hfill \
x = 1{text{ and }}y = 1 hfill \
hfill \
{text{d) }}M < 0 hfill \
frac{{{x^4}}}{{16{y^9}}} < 0 hfill \
{x^4}{text{ has even exponent so it is always positive}}{text{. To}} hfill \
{text{make }}M{text{ negative, }}y{text{ must be negative}} hfill \
hfill \
{text{An example would be}} hfill \
x = 3{text{ and }}y = – 1 hfill \
end{gathered} ]
Result
3 of 3
$M=dfrac{x^4}{16y^9}$

a) $x=2$ , $y=1$

b) $x=3$, $y=1$

c) $x=1$, $y=1$

d) $x=3$ , $y=-1$

Exercise 11
Step 1
1 of 2
[begin{gathered}
{text{a) The surface area to volume ratio is }}frac{{SA}}{V} hfill \
frac{{SA}}{V} = frac{{2pi rh + 2pi {r^2}}}{{pi {r^2}h}} hfill \
hfill \
= frac{{pi rleft( {2h + 2r} right)}}{{pi rleft( {rh} right)}} hfill \
hfill \
= frac{{left( {2h + 2r} right)}}{{rh}} hfill \
hfill \
{text{b) when }}r = 0.8{text{ cm and }}h = 12{text{ cm}} hfill \
hfill \
frac{{left( {2h + 2r} right)}}{{rh}} = frac{{left( {2left( {12} right) + 2left( {0.8} right)} right)}}{{left( {0.8} right)left( {12} right)}} hfill \
hfill \
= frac{{left( {24 + 1.6} right)}}{{9.6}} hfill \
hfill \
= frac{{8{text{ cm}}}}{{3{text{ c}}{{text{m}}^{text{2}}}}}{text{ or }}2.67{text{ c}}{{text{m}}^{ – 1}} hfill \
end{gathered} ]
Result
2 of 2
a) $dfrac{2h+2r}{hr}$

b) $dfrac{SA}{V}=2.67;text{cm}^{-1}$

Exercise 12
Step 1
1 of 2
[begin{gathered}
{text{We shall simplify the expressions first}} hfill \
frac{{{{text{y}}^{ – 4}}{{left( {{x^2}} right)}^{ – 3}}{y^{ – 3}}}}{{{x^{ – 5}}{{left( {{y^{ – 4}}} right)}^2}}} = frac{{{y^{ – 4}}left( {{x^{ – 6}}} right){y^{ – 3}}}}{{{x^{ – 5}}{y^{ – 8}}}} hfill \
= frac{{{y^{ – 7}}{x^{ – 6}}}}{{{x^{ – 5}}{y^{ – 8}}}} hfill \
= {y^{ – 7 – 8}}{x^{ – 6 – 5}} hfill \
= frac{y}{x} hfill \
{text{Substitute the given values}} hfill \
frac{y}{x} = frac{{ – 3}}{2} hfill \
hfill \
{text{We shall simplify the expressions first}} hfill \
frac{{{x^{ – 3}}{{left( {{y^{ – 1}}} right)}^2}}}{{left( {{x^{ – 5}}} right)left( {{y^4}} right)}} = frac{{{x^{ – 3}}{y^{ – 2}}}}{{{x^{ – 5}}{y^4}}} hfill \
= {x^{ – 3 – left( { – 5} right)}}{y^{ – 2 – 4}} hfill \
= {x^2}{y^{ – 6}} hfill \
= frac{{{x^2}}}{{{y^6}}} hfill \
{text{Substitute the given values}} hfill \
frac{{{x^2}}}{{{y^6}}} = frac{{{2^2}}}{{{3^6}}} hfill \
= frac{4}{729} hfill \
hfill \
{text{We shall simplify the expressions first}} hfill \
left( {{y^{ – 5}}} right){left( {{x^5}} right)^{ – 2}}left( {{y^2}} right){left( {{x^{ – 3}}} right)^{ – 4}} = {y^{ – 5 + 2}}{x^{ – 10 + 12}} hfill \
= {y^{ – 3}}{x^2} hfill \
= frac{{{x^2}}}{{{y^3}}} hfill \
{text{Substitute the given values}} hfill \
= frac{{{2^2}}}{{{3^3}}} hfill \
= frac{4}{{27}} hfill \
hfill \
{text{The order from least to greatest is}} hfill \
frac{{ – 3}}{2},frac{4}{{27}},frac{4}{9} hfill \
end{gathered} ]
Result
2 of 2
[begin{gathered}
{text{The order from least to greatest is}} hfill \
frac{{ – 3}}{2},frac{4}{{27}},frac{4}{729} hfill \
end{gathered} ]
Exercise 13
Step 1
1 of 3
$$
bold{Similarities}
$$
$$
bold{Differences}
$$
Step 2
2 of 3
Both processes need to follow the order of operations.

(1) terms inside parenthesis

(2) exponent

(3) multiplication or division (whichever comes first)

(4) addition or subtraction (whichever comes first)

In simplifying algebraic expression, you can add or subtract similar terms (you cannot add unlike terms), however, you can multiply or divide terms regardless of whether they are similar or not.
Result
3 of 3
Both processes need to follow the order of operations. The difference is that for algebraic expression, you can only add or subtract similar terms.
Exercise 14
Step 1
1 of 2
[begin{gathered}
{text{a) We need to express the radius }}r{text{ in terms of the volume }}V hfill \
V = frac{4}{3}pi {r^3} hfill \
{r^3} = frac{V}{{frac{4}{3}pi }} hfill \
{r^3} = frac{{3V}}{{4pi }} hfill \
r = sqrt[3]{{frac{{3V}}{{4pi }}}}{text{ or }}r = {left( {frac{{3V}}{{4pi }}} right)^{frac{1}{3}}} hfill \
hfill \
{text{b) We need to find }}r{text{ when }}V = frac{{256}}{3}{{text{m}}^{text{3}}} hfill \
r = {left( {frac{{3V}}{{4pi }}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{3left( {frac{{256}}{3}{{text{m}}^{text{3}}}} right)}}{{4pi }}} right)^{frac{1}{3}}} hfill \
= {left( {frac{{256}}{4}{{text{m}}^{text{3}}}} right)^{frac{1}{3}}} hfill \
= {left( {64{{text{m}}^{text{3}}}} right)^{frac{1}{3}}} hfill \
= sqrt[3]{{64{{text{m}}^{text{3}}}}} hfill \
r = 4{text{ m}} hfill \
hfill \
hfill \
end{gathered} ]
Result
2 of 2
a) $r=sqrt[3]{dfrac{3V}{4pi}}=left(dfrac{3V}{4pi}right)^{frac{1}{3}}$

b) $r=4$ m

Exercise 15
Step 1
1 of 3
Remember that

$x^acdot x^b=x^{a+b}$

$sqrt[m]{a^m}=a$

$(x^a)^b=x^{ab}$

$$
dfrac{x^a}{x^b}=x^{a-b}
$$

Step 2
2 of 3
$$
frac{{sqrt {xleft( {{x^{2n + 1}}} right)} }}{{sqrt[3]{{{x^{3n}}}}}} = frac{{sqrt {{x^{2n + 2}}} }}{{{x^n}}} = frac{{{{left( {{x^{2n + 2}}} right)}^{frac{1}{2}}}}}{{{x^n}}} = frac{{{x^{n + 1}}}}{{{x^n}}} = {x^{n + 1 – n}} = x
$$
Result
3 of 3
$$
x
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New