All Solutions
Page 170: Practice Questions
Since the second difference is constant, then the function defined by the given table is quadratic.
Since the second difference is constant, then the function defined by the given table is quadratic.
b) Quadratic
1) Plot the vertex $(h,k)$ and evaluate the function for $x$ values close to $x=h$,
for example $x=h-1$ , $x=h+1$
In this case, the $x$-intercepts are $(-4,0)$ and $(6,0)$
$h=dfrac{4-6}{2}=-1$, $k=f(-1)=2(-1+4)(-1-6)=-50$
for example $x=h-1$ , $x=h+1$
b) For quadratic function of the form $f(x)=a(x-m)(x-n)$, the $x$-intercepts are $(m,0)$ and $(n,0)$ while you can obtain the vertex as $h=dfrac{m+n}{2}$, $k=f(h)$
,$ has vertex at $(h,k)$, axis of symmetry at $x=h$. Hence, the given quadratic function, $f(x)=-3(x-2)^2+5
,$ has the following characteristics:
$$
begin{align*}
text{Vertex: }&
(2,5)
\text{Axis of Symmetry: }&
x=2
.end{align*}
$$
Since $a<0$ ($a=-3$), then the given quadratic function is a parabola that opens down with a maximum value of $k,$ equal to $5
.$ Hence,
$$
begin{align*}
text{Domain: }&
(-infty,infty)
\text{Range: }&
(-infty,-3]
.end{align*}
$$
,$ the given function, $f(x)=2(x+4)(x-6)
,$ is equivalent to
$$
begin{align*}
f(x)&=2(x^2-2x-24)
\
f(x)&=2x^2-4x-48
\
f(x)&=(2x^2-4x)-48
\
f(x)&=2(x^2-2x)-48
\
f(x)&=2(x^2-2x+1)-48-2(1)
\
f(x)&=2(x-1)^2-48-2
\
f(x)&=2(x-1)^2-50
.end{align*}
$$
The quadratic function given by $f(x)=a(x-h)^2+k
,$ has vertex at $(h,k)$, axis of symmetry at $x=h$. Hence, the quadratic function above has the following characteristics:
$$
begin{align*}
text{Vertex: }&
(1,-50)
\text{Axis of Symmetry: }&
x=1
.end{align*}
$$
Since $a>0$ ($a=2$), then the given quadratic function is a parabola that opens up with a minimum value of $k,$ equal to $-50
.$ Hence,
$$
begin{align*}
text{Domain: }&
(-infty,infty)
\text{Range: }&
[-50,infty)
.end{align*}
$$
begin{align*}
text{a) Vertex: }&
(2,5)
\text{Axis of Symmetry: }&
x=2
\text{Domain: }&
(-infty,infty)
\text{Range: }&
(-infty,-3]
.end{align*}
$$
$$
begin{align*}
text{b) Vertex: }&
(1,-50)
\text{Axis of Symmetry: }&
x=1
\text{Domain: }&
(-infty,infty)
\text{Range: }&
[-50,infty)
.end{align*}
$$
$f(x)=ax^2+bx+c$
$$
bold{a);;} text{Remember the special product} (a-b)^2=a^2-2ab+b^2
$$
$$
begin{align*}
f(x) &=-3(x-2)^2+5\
&=-3(x^2-4x+4)+5\
&=-3x^2+12x-12+5\
f(x)&=-3x^2+12x-7end{align*}
$$
$$
bold{b);;;} text{Remember the distributive property} (a+b)(c+d)=a(c+d)+b(c+d)
$$
$$
begin{align*}
f(x) &= 2(x+4)(x-6)\
&=2[x(x-6)+4(x-6)]\
&=2(x^2-6x+4x-24)\
&=2(x^2-2x-24)\
f(x)&=2x^2-4x-48\
end{align*}
$$
b) $f(x)=2x^2-4x-48$
,$ the given function, $f(x)=x^2-6x+2
,$ is equivalent to
$$
begin{align*}
f(x)&=(x^2-6x)+2
\
f(x)&=(x^2-6x+9)+2-9
\
f(x)&=(x-3)^2-7
.end{align*}
$$
Since $a>0$ ($a=1$), then the given quadratic function is a parabola that opens
up
with a minimum value of $k,$ equal to $-7
.$
Hence, the
minimum value is $-7$.
,$ the given function, $f(x)=2(x-4)(x+6)
,$ is equivalent to
$$
begin{align*}
f(x)&=2(x^2+2x-24)
\
f(x)&=2x^2+4x-48
\
f(x)&=(2x^2+4x)-48
\
f(x)&=2(x^2+2x)-48
\
f(x)&=2(x^2+2x+1)-48-2(1)
\
f(x)&=2(x+1)^2-48-2
\
f(x)&=2(x+1)^2-50
.end{align*}
$$
Since $a>0$ ($a=2$), then the given quadratic function is a parabola that opens
up
with a minimum value of $k,$ equal to $-50
.$
Hence, the
minimum value is $-50$.
,$ the given function, $f(x)=-2x^2+10x
,$ is equivalent to
$$
begin{align*}
f(x)&=-2x^2+10x
\
f(x)&=-2(x^2-5x)
\
f(x)&=-2left( x^2-5x+dfrac{25}{4} right)+2left( dfrac{25}{4} right)
\
f(x)&=-2left( x^2-{5}{2} right)^2+dfrac{25}{2}
.end{align*}
$$
Since $a<0$ ($a=-2$), then the given quadratic function is a parabola that opens
down
with a
maximum
value of $k,$ equal to $dfrac{25}{2}
.$
Hence, the
maximum value is $dfrac{25}{2}$.
,$ the given function, $f(x)=3.2x^2+15x-7
,$ is equivalent to
$$
begin{align*}
f(x)&=(3.2x^2+15x)-7
\
f(x)&=3.2(x^2+4.6875x)-7
\
f(x)&=3.2(x^2+4.6875x+5.4931640625)-7-3.2(5.4931640625)
\
f(x)&=3.2(x+2.34375)^2-7-17.578125
\
f(x)&=3.2(x+2.34375)^2-24.578125
.end{align*}
$$
Since $a>0$ ($a=3.2$), then the given quadratic function is a parabola that opens
up
with a
minimum
value of $k,$ equal to $-24.578125
.$
Hence, the
minimum value is $-24.578125$.
b) minimum value is $-50$
c) maximum value is $dfrac{25}{2}$
d) minimum value is $-24.578125$
,$ the given function, $P(x)=-4x^2+16x-7
,$ is equivalent to
$$
begin{align*}
P(x)&=(-4x^2+16x)-7
\
P(x)&=-4(x^2-4x)-7
\
P(x)&=-4(x^2-4x+4)-7+4(4)
\
P(x)&=-4(x-2)^2-7+16
\
P(x)&=-4(x-2)^2+9
.end{align*}
$$
With $P(x)$ and $x$ given as a thousand units, and since the maximum is given at $k$ (equal to $9
)$ which occurs at $h$ (equal to $2
),$ then
$$
begin{align*}
text{Maximum Profit: }&
$9000
\text{Number of Items to Maximize Profit: }&
2000text{ items}
.end{align*}
$$
begin{align*}
text{Maximum Profit: }&
$9000
\text{Number of Items to Maximize Profit: }&
2000text{ items}
end{align*}
$$
,$ the given function, $C(x)=0.3x^2-1.2x+2
,$ is equivalent to
$$
begin{align*}
C(x)&=(0.3x^2-1.2x)+2
\
C(x)&=0.3(x^2-4x)+2
\
C(x)&=0.3(x^2-4x+4)+2-0.3(4)
\
C(x)&=0.3(x-2)^2+2-1.2
\
C(x)&=0.3(x-2)^2+0.8
.end{align*}
$$
With $C(x)$ and $x$ given as a thousand units, and since the minimum is given at $k$ (equal to $0.8
)$ which occurs at $h$ (equal to $2
),$ then
$$
begin{align*}
text{Minimum Cost: }&
$800
\text{Number of Items to Minimize Cost: }&
2000text{ items}
.end{align*}
$$
begin{align*}
text{Minimum Cost: }&
$800
\text{Number of Items to Minimize Cost: }&
2000text{ items}
end{align*}
$$
$$
begin{align*}
y&=x(6-x)
\
y&=6x-x^2
\
y&=-x^2+6x
.end{align*}
$$
In the form, $f(x)=a(x-h)^2+k
,$ the equation above is equivalent to
$$
begin{align*}
y&=-(x^2-6x)
\
y&=-(x^2-6x+9)+9
\
y&=-(x-3)^2+9
.end{align*}
$$
The equation above has a maximum value of $k$ (equal to $9$). Hence, the largest possible product between the two numbers is $9
.$
9
$$
,$ is equivalent to
$$
begin{align*}
y&=x^2-4x+3
.end{align*}
$$
Interchanging the $x$ and $y$ variables and then solving for $y$ result to
$$
begin{align*}
x&=y^2-4y+3
\
x-3&=y^2-4y
\
x-3+4&=y^2-4y+4
\
x+1&=(y-2)^2
\
pmsqrt{x+1}&=y-2
\
2pmsqrt{x+1}&=y
.end{align*}
$$
Hence, the inverse is
$f^{-1}=2pmsqrt{x+1}$.
,$ is equivalent to
$$
begin{align*}
f(x)&=(x^2-4x)+3
\
f(x)&=(x^2-4x+4)+3-4
\
f(x)&=(x-2)^2-1
.end{align*}
$$
Since $a>0$ ($a=1$), then the graph is a parabola that opens up with a minimum value of $k$ (equal to $-1$). Hence, $f(x)$ has the following characteristics:
$$
begin{align*}
text{Domain: }&
(-infty,infty)
\text{Range: }&
[-1,infty)
.end{align*}
$$
With $f^{-1}(x)=f^{-1}=2pmsqrt{x+1}$ then $f^{-1}(x)$ has the following characteristics:
$$
begin{align*}
text{Domain: }&
[-1,infty)
\text{Range: }&
(-infty,infty)
.end{align*}
$$
,$ (red graph) is shown below.
Reflecting the graph of $f(x)$ about the line $y=x$ (black graph), the graph of $f^{-1}(x)$ (blue graph) is shown below.
begin{align*}
text{ a) } f^{-1}&=2pmsqrt{x+1}
\\
text{b) Domain of $f(x)$: }&
(-infty,infty)
\text{Range of $f(x)$: }&
[-1,infty)
\text{Domain of $f^{-1}(x)$: }&
[-1,infty)
\text{Range of $f^{-1}(x)$: }&
(-infty,infty)
\\
text{c) see graph}
end{align*}
$$
,$ results to
$$
begin{align*}
R(x)-15&=-2.8(x-10)^2
\
dfrac{R(x)-15}{-2.8}&=(x-10)^2
\\
pmsqrt{dfrac{R(x)-15}{-2.8}}&=x-10
\\
10pmsqrt{dfrac{R(x)-15}{-2.8}}&=x
.end{align*}
$$
Since $x$ (number of items sold) is a positive number, then $x=10+sqrt{dfrac{R(x)-15}{-2.8}}
.$
x=10+sqrt{dfrac{R(x)-15}{-2.8}}
$$
$x+3geq 0implies xgeq 3$
domain: ${ x in bold{R};|;xgeq 3}$
The range is the set of all possible values of $f(x)$.
As you can observe from the graph,
range: ${ f(x)inbold{R};|;f(x)leq 0}$
$y=-sqrt{x+3}$
$x=-sqrt{y+3}$
$x^2=y+3$
$y=x^2-3$
The domain of $f^{-1}(x)$ must be the range of $f(x)$, therefore
$f^{-1}(x)=x^2-3$ where $xleq 0$
range: ${ f(x)inbold{R};|;f(x)leq 0}$
b) $f^{-1}(x)=x^2-3$ where $xleq 0$
$$
sqrt{a^2cdot b}=asqrt{b}
$$
b) $sqrt{68}=sqrt{4cdot 17}=sqrt{2^2cdot 17}=2sqrt{17}$
c) $sqrt{180}=sqrt{36cdot 5}=sqrt{6^2cdot 5}=6sqrt{5}$
d) $-3sqrt{75}=-3sqrt{25cdot 3}=-3sqrt{5^2cdot 3}=-3(5)sqrt{3}=-15sqrt{3}$
e) $5sqrt{98}=5cdot sqrt{49cdot 2}=5cdot sqrt{7^2cdot 2}=5cdot 7sqrt{2}=35sqrt{2}$
f) $-8sqrt{12}=-8sqrt{4cdot 3}=-8sqrt{2^2cdot 3}=-8cdot 2sqrt{3}=-16sqrt{3}$
b) $2sqrt{17}$
c) $6sqrt{5}$
d) $-15sqrt{3}$
e) $35sqrt{2}$
f) $-16sqrt{3}$
,$ is equivalent to
$$
begin{align*}
&
sqrt{7(14)}
\&=
sqrt{7(7cdot2)}
\&=
sqrt{(7)^2cdot2}
\&=
7sqrt{2}
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
3(2)sqrt{5(15)}
\&=
6sqrt{5(5cdot3)}
\&=
6sqrt{(5)^2cdot3}
\&=
6(5)sqrt{3}
\&=
30sqrt{3}
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
sqrt{4cdot3}+2sqrt{16cdot3}-5sqrt{9cdot3}
\&=
sqrt{(2)^2cdot3}+2sqrt{(4)^2cdot3}-5sqrt{(3)^2cdot3}
\&=
2sqrt{3}+2(4)sqrt{3}-5(3)sqrt{3}
\&=
2sqrt{3}+8sqrt{3}-15sqrt{3}
.end{align*}
$$
By combining like radicals, the expression above is equivalent to
$$
begin{align*}
&
2sqrt{3}+8sqrt{3}-15sqrt{3}
\&=
(2+8-15)sqrt{3}
\&=
-5sqrt{3}
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
3sqrt{4cdot7}-2sqrt{25cdot2}+sqrt{9cdot7}-3sqrt{9cdot2}
\&=
3sqrt{(2)^2cdot7}-2sqrt{(5)^2cdot2}+sqrt{(3)^2cdot7}-3sqrt{(3)^2cdot2}
\&=
3(2)sqrt{7}-2(5)sqrt{2}+3sqrt{7}-3(3)sqrt{2}
\&=
6sqrt{7}-10sqrt{2}+3sqrt{7}-9sqrt{2}
.end{align*}
$$
By combining like radicals, the expression above is equivalent to
$$
begin{align*}
&
(6sqrt{7}+3sqrt{7})+(-10sqrt{2}-9sqrt{2})
\&=
(6+3)sqrt{7}+(-10-9)sqrt{2}
\&=
9sqrt{7}-19sqrt{2}
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
4(5)+4(2sqrt{3})-sqrt{3}(5)-sqrt{3}(2sqrt{3})
.end{align*}
$$
Using the properties of radicals, the expression above is equivalent to
$$
begin{align*}
&
20+8sqrt{3}-5sqrt{3}-2(sqrt{3})^2
\&=
20+8sqrt{3}-5sqrt{3}-2(3)
\&=
20+8sqrt{3}-5sqrt{3}-6
.end{align*}
$$
By combining like terms, the expression above is equivalent to
$$
begin{align*}
&
(20-6)+(8sqrt{3}-5sqrt{3})
\&=
14+3sqrt{3}
.end{align*}
$$
,$ is equivalent to
$$
begin{align*}
&
3sqrt{5}(-2sqrt{5})+3sqrt{5}(5sqrt{10})+2sqrt{10}(-2sqrt{5})+2sqrt{10}(5sqrt{10})
.end{align*}
$$
Using the properties of radicals, the expression above is equivalent to
$$
begin{align*}
&
3(-2)(sqrt{5})^2+3(5)sqrt{5(10)}+2(-2)sqrt{10(5)}+2(5)(sqrt{10})^2
\&=
-6(5)+15sqrt{5(5cdot2)}-4sqrt{5cdot2(5)}+10(10)
\&=
-30+15sqrt{(5)^2cdot2}-4sqrt{(5)^2cdot2}+100
\&=
-30+15(5)sqrt{2}-4(5)sqrt{2}+100
\&=
-30+75sqrt{2}-20sqrt{2}+100
.end{align*}
$$
By combining like terms, the expression above is equivalent to
$$
begin{align*}
&
(-30+100)+(75sqrt{2}-20sqrt{2})
\&=
70+55sqrt{2}
.end{align*}
$$
b) $30sqrt{3}$
c) $-5sqrt{3}$
d) $9sqrt{7}-19sqrt{2}$
e) $14+3sqrt{3}$
f) $70+55sqrt{2}$