All Solutions
Page 138: Getting Started
$f(x)=-3x^2+4x-1$
a) $f(1)=-3(1)^2+4(1)-1=0$
b) $f(-2)=-3(-2)^2+4(-2)-1=-21$
c) $fleft(dfrac{1}{3}right)=-3left(dfrac{1}{3}right)^2+4left(dfrac{1}{3}right)-1=0$
d) $f(0)=-3(0)^2+4(0)-1=-1$
e) $f(k)=-3k^2+4k-1$
f) $f(-k)=-3(-k)^2+4(-k)-1=-3k^2-4k-1$
b) $-$21
c) 0
d) $-$1
e) $-3k^2+4k-1$
$f) -3k^2-4k-1$
$$
x^2+2x-15
$$
2x^2+12x
$$
$-3(x^2+2x+2x+4)+3$
$-3(x^2+4x+4)+3$
$-3x^2-12x-12+3$
$$
-3x^2-12x-9
$$
$x^2-x-x+1$
$$
x^2-2x+1
$$
$bold{vertex}$ $(h,k)$ is the point corresponding to the maximum or minimum value.
$bold{axis;of;symmetry}$, $x=h$ is the line that divides the parabola into two equal parts
$bold{domain}$, set of all possible values of $x$ which is $bold{R}$ for all quadratic functions.
$bold{range}$, set of all possible values of $y$
a) vertex$(-3,-4)$
axis of symmetry: $x=-3$
domain: ${ xin bold{R}}$
It opens downward, so $y$ values can’t be more than that of the vertex
range: ${ yin bold{R};|;yleq -4}$
axis of symmetry: $x=5$
domain: ${ xin bold{R}}$
It opens upward, so $y$ values can’t be less than that of the vertex
range: ${ y in bold{R};|;ygeq 1}$
defarraystretch{1.5}%
begin{tabular}{|l|l|l|}
hline
& a) & b) \ hline
vertex & $(-3,-4)$ & $(5,1)$ \ hline
axis of symmetry & $x=-3$ & $x=5$ \ hline
domain & ${ xin bold{R}}$ & ${ xin bold{R}}$ \ hline
range & ${yin bold{R};|;yleq -4}$ & ${yin bold{R};|;ygeq 1}$ \ hline
end{tabular}
end{table}
,$ is equivalent to
$$
begin{align*}
y&=(x-0)^2+4
.end{align*}
$$
Since the vertex of the quadratic equation in the form $y=a(x-h)^2+k$ is given by $(h,k),$ then the vertex is $left(
0,4
right).$
Since the axis of symmetry of a quadratic equation is given by $x=h,$ then the axis of symmetry is
$$
begin{align*}
x=0
.end{align*}
$$
Since in the given equation, $a>0$ ($a=
1
,$) then the parabola defined by the given equation opens
up.
,$ is equivalent to
$$
begin{align*}
y&=3(x-4)^2+1
.end{align*}
$$
Since the vertex of the quadratic equation in the form $y=a(x-h)^2+k$ is given by $(h,k),$ then the vertex is $left(
4,1
right).$
Since the axis of symmetry of a quadratic equation is given by $x=h,$ then the axis of symmetry is
$$
begin{align*}
x=4
.end{align*}
$$
Since in the given equation, $a>0$ ($a=
3
,$) then the parabola defined by the given equation opens
up.
,$ is equivalent to
$$
begin{align*}
y&=-0.5(x-(-7))^2-3
.end{align*}
$$
Since the vertex of the quadratic equation in the form $y=a(x-h)^2+k$ is given by $(h,k),$ then the vertex is $left(
-7,-3
right).$
Since the axis of symmetry of a quadratic equation is given by $x=h,$ then the axis of symmetry is
$$
begin{align*}
x=-7
.end{align*}
$$
Since in the given equation, $a<0$ ($a=
-0.5
,$) then the parabola defined by the given equation opens
down.
,$ is equivalent to
$$
begin{align*}
y&=-3(x+2)(x-5)
\
y&=-3(x^2-3x-10)
\
y&=-3(x^2-3x)+30
\
y&=-3left( x^2-3x+dfrac{9}{4} right)+30+3left( dfrac{9}{4} right)
\
y&=-3left( x-dfrac{3}{2} right)^2+30+dfrac{27}{4}
\
y&=-3left( x-dfrac{3}{2} right)^2+dfrac{120}{4}+dfrac{27}{4}
\
y&=-3left( x-dfrac{3}{2} right)^2+dfrac{147}{4}
.end{align*}
$$
Since the vertex of the quadratic equation in the form $y=a(x-h)^2+k$ is given by $(h,k),$ then the vertex is $left(
dfrac{3}{2}, dfrac{147}{4}
right).$
Since the axis of symmetry of the quadratic equation is given by $x=h,$ then the axis of symmetry is
$$
begin{align*}
x=dfrac{3}{2}
.end{align*}
$$
Since in the given equation, $a<0$ ($a=
-3
,$) then the parabola defined by the given equation opens
down.
0,4
right);$ $text{Axis of Symmetry: }
x=0
;$ $text{Opening: }text{
Up
}$
b) $text{Vertex: }left(
4,1
right);$ $text{Axis of Symmetry: }
x=4
;$ $text{Opening: }text{
Up
}$
c) $text{Vertex: }left(
-7,-3
right);$ $text{Axis of Symmetry: }
x=-7
;$ $text{Opening: }text{
Down
}$
d) $text{Vertex: }left(
dfrac{3}{2}, dfrac{147}{4}
right);$ $text{Axis of Symmetry: }
x=dfrac{3}{2}
;$ $text{Opening: }text{
Down
}$
$$
begin{equation*} x=dfrac{-bpmsqrt{b^2-4ac}}{2a} end{equation*}
$$
Notice that if $b^2-4ac<0$, there will be no real solution.
$$
begin{align*} x^2-11x+24&=(x-8)(x-3)\
& (x-8)=0;text{or};(x-3)=0\
therefore; & x=8;text{or} ;;x=3end{align*}
$$
$bold{b);;}$ We cannot find factors of 3 whose sum is $-6$, so we shall use quadratic formula.
$a=1$ , $b=-6$ , $c=3$
$$
begin{align*} x&=dfrac{-bpmsqrt{b^2-4ac}}{2a}\
&=dfrac{6pmsqrt{(-6)^2-4(1)(3)}}{2(1)}\
&=dfrac{6pmsqrt{24}}{2}\
&=dfrac{6pmsqrt{4times 6}}{2}\
&=dfrac{6pm2sqrt{6}}{2}\
x&=3pmsqrt{6}\
therefore; &; x=0.55;text{or} ;5.45end{align*}
$$
$$
begin{align*} 3x^2-2x-5&=(3x-5)(x+1) \
&(3x-5)=0 ;text{ or } x+1=0\
therefore; &x=dfrac{5}{3};text{or};-1\
&x=1.67;text{or} -1 end{align*}
$$
$bold{d);;}$ We shall rewrite this in the form $ax^2+bx+c=0$
$(3x^2-x^2)+(2x-9x)+3=0implies 2x^2-7x+3=0$
$$
begin{align*} 2x^2-7x+3&=(2x-1)(x-3)\
&(2x-1)=0;text{ or }; (x-3)=0\
therefore; &x=frac{1}{2};text{ or };x=3\
end{align*}
$$
b) $x=0.55$ or 5.45
c) $x=-1$ or 1.67
d) $x=0.5$ or 3
We can find it either by factoring or quadratic formula.
$ax^2+bx+c=0$
$$
x=dfrac{-bpmsqrt{b^2-4ac}}{2a}
$$
$f(x)=x^2-9=(x-3)(x+3)=0$
$x=3$ or $x=-3$
$a=1$ , $b=-8$ , $c=-18$
$x=dfrac{-(-8)pmsqrt{(-8)^2-4(1)(-18)}}{2(1)}$
$x=dfrac{8pm sqrt{136}}{2}=dfrac{8pmsqrt{4cdot 34}}{2}$
$x=dfrac{8pm 2sqrt{34}}{2}$
$x=4pm sqrt{34}$
$x=-1.83$ or $x=9.83$
$f(x)=-3x^2+10x-8=(-1)(3x-4)(x-2)$
$3x-4=0implies x=dfrac{4}{3}=1.67$
$$
x-2=0implies x=2
$$
$f(x)=6x-x^2$
$f(x)=x(6-x)$
$x=0$ or $x=6$
b) $x=-1.83$ or $9.83$
c) $x=1.67$ or 2
d) $x=0$ or $6$
Characteristics: The graph of a quadratic function is a parabola that opens up or down.
Examples:
$$
f(x)=2x^2+3x-1
$$
$$
g(x)=-3(x-2)^2+1
$$
Non-examples:
$$
f(x)=x+1
$$
$$
g(x)=x^3-1
$$